Subscribe: pubmed: keski-oja j
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/erss.cgi?rss_guid=0WPi1Of3Vv13c4HUn_YTrz7X6_8yqyOGGJIeGT1E99_
Added By: Feedage Forager Feedage Grade C rated
Language: English
Tags:
cell stemness  cell  cells  glioblastoma cells  glioblastoma  glioma  netrin  notch signaling  signaling  stem cells  stem  stemness 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: pubmed: keski-oja j

pubmed: keski-oja j



NCBI: db=pubmed; Term=keski-oja j



 



Motility of glioblastoma cells is driven by netrin-1 induced gain of stemness.
(image) (image) Related Articles

Motility of glioblastoma cells is driven by netrin-1 induced gain of stemness.

J Exp Clin Cancer Res. 2017 Jan 09;36(1):9

Authors: Ylivinkka I, Sihto H, Tynninen O, Hu Y, Laakso A, Kivisaari R, Laakkonen P, Keski-Oja J, Hyytiäinen M

Abstract
BACKGROUND: Glioblastoma is an untreatable brain cancer. The tumors contain a population of stem-like cells which are highly invasive and resistant to therapies. These cells are the main reason for the lethality of glioblastoma. Extracellular guidance molecule netrin-1 promotes the invasiveness and survival of various cancer cell types. We have previously found that netrin-1 activates Notch signaling, and Notch signaling associates with cell stemness. Therefore, we have here investigated the effects of netrin-1 on glioblastoma pathogenesis and glioblastoma cell stemness.
METHODS: Glioma tissue microarrays were stained with immunohistochemistry and the results were used to evaluate the association between netrin-1 and survival of glioma patients. The localization of netrin-1 was analyzed utilizing fresh frozen glioblastoma tissues. The glioma cell invasion was investigated using ex vivo glioma tissue cultures and newly established primary cell cultures in 3D in vitro invasion assays. Intracranial mouse xenograft models were utilized to investigate the effects of netrin-1 on glioblastoma growth and invasion in vivo.
RESULTS: Netrin-1 expression associated with poor patient prognosis in grade II-III gliomas. In addition, its expression correlated with the stem-like cell marker nestin. Netrin-1 overexpression in cultured cells led to increased formation of stem-like cell spheroids. In glioblastoma tumor biopsies netrin-1 localized to hypoxic tumor areas known to be rich in the stem-like cells. In xenograft mouse models netrin-1 expression altered the phenotype of non-invasive glioblastoma cells into diffusively invading and increased the expression of glioma stem-like cell markers. Furthermore, a distinct invasion pattern where netrin-1 positive cells were following the invasive stem-like cells was detected both in mouse models and ex vivo human glioblastoma tissue cultures. Inhibition of netrin-1 signaling targeted especially the stem-like cells and inhibited their infiltrative growth.
CONCLUSIONS: Our findings describe netrin-1 as an important regulator of glioblastoma cell stemness and motility. Netrin-1 activates Notch signaling in glioblastoma cells resulting in subsequent gain of stemness and enhanced invasiveness of these cells. Moreover, inhibition of netrin-1 signaling may offer a way to target stem-like cells.

PMID: 28069038 [PubMed - indexed for MEDLINE]