Subscribe: The Other 95%
Added By: Feedage Forager Feedage Grade B rated
Language: English
atlantic  card  circus spineless  fish  found  jsl  marine  nautilus  new  ocean  oyster drill  oyster  shell  species  years 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: The Other 95%

The Other 95%

A blog highlighting the unappreciated majority of the animal kingdom. News, current research and all things invertebrate are covered, analyzed and scrutinized.

Updated: 2015-09-24T17:44:23.040-04:00


What in the larval world is this?


No one at Duke seems to know what this is. Southern Fried Scientist has allowed me to copy verbatim his post in the hopes that maybe someone out there in TO95's world knows what this is!
The following photo was taken near the Yadkin River in Davie, North Carolina. According to observers, there were millions of them attached to the sides of trees and undersides of leaves throughout the region. In some places they were hanging so thick they looked like tiny bats. Does anyone know what they are?

photo by Gregory Bonito (click to embiggen)

~Southern Fried Scientist


Circus of the Spineless #49 is up!


Xenogere has the latest edition of the Circus of the Spineless up! Its nicely written and has lots of excellent links to invertagoodness in it!(image)

Invert vs. Vert (Anti-aircraft edition)


Hat tip to DrM at DSN

(object) (embed)

Circus of the Spineless #47 is up at Beetles in the Bush!


Beetles in the Bush has the 47th edition of the Circus of the Spineless up! A nicely laid out post with 16 fabulous submissions spanning a wide range of terrestrial, marine and aquatic critters.

Matthew Sarver from the Modern Naturalist
is hosting edition #48! You can submit entries via his contact page.(image)

Circus of the Spineless #46 is up!


Great job to Kate who posted the latest installment of the Circus of the Spineless (#46!) up at Adventures of a Free Range Urban Primate. A fantastic edition, I'm glad to see new faces in there.

I'm looking for hosts for May and beyond. Leave a comment or send me an email if you'd like to host! Next month will be hosted by Ted at Beetles in the Bush, makes sure you get your submission in by January 30. You can contact him here.(image)

Cephalopod Inspired


Looking for something invertebrate inspired to give for Christmas, Cephalopodmas or Chanukah?

Noadi may very well have you covered. In her etsy store she has a variety of primarily cephalopod themed earrings and necklaces. A small sampling can be seen in the photo below:

(image) (image)

Work with an Invert! - Amphipod Pop Gen


From EvolDir:

M.Sc. position: Marine invertebrate population genetics.

I seek a highly motivated and enthusiastic candidate to fill a fully funded MSc position in the Department of Biology at University of New Brunswick (Fredericton). The project will use DNA sequence variation to assess the level of genetic subdivision and patterns of gene flow among populations of the abundant marine amphipod Corophium volutator. The successful candidate will join a multi-disciplinary collaboration between researchers at UNB, Carleton University, and Mount Allison University. Our aim is to model the environmental interactions between climate driven processes and the population dynamics of C. volutator throughout the mudflats in the Bay of Fundy, Canada.

For more information about the Biology Department, see:

For information about Graduate Studies at UNB, see:

For enquires, or to apply, email a CV or resume, a letter of interest, unofficial transcripts and contact information for 3 references to Jason Addison (jaddison at unb dot ca). The review of applications will begin immediately and will remain open until the position is filled. Work could potentially begin anytime, but admittance to the Graduate Studies program is expected in January, May, or September of 2010.

An Awesome Ocean Community


Just a quick note, a note of thanks!

The ocean blogging and ocean twitter communities really came through in a huge way today for Donors Choose. HP had an offer to put $2000 into the Oceans in the Classroom Initiative but only if the community could raise $2000 by midnight on Sunday the 25th. As late as 11pm it seemed a long shot with over $500 left to go. But it happened. With matching $$$ and swag from Kevin and Rick, it happened. Thanks to HP, the $2019 you all have contributed will now be doubled.


There are still many more ocean themed projects out there to fund, so if you haven't yet donated, please do. We do so want to give some of these hundreds of kids the opportunity to get hooked on science and the ocean with all it marvels.

So now I still owe 2 more cards. Pick a card any card...(image)

Crepidula Fornicata


We've got two new Ocean Inspired Donors Choose projects that have been funded in the Oceans in the Classroom Challenge! The first one that was funded on Thursday was the awesome Invertebrates in my Tank project that will provide lots of kids with the opportunity to explore one of our favorite subjects: marine inverts!The Inverts in my Tank card is the 6 of Spades — The Slipper Snail, Crepidula fornicata.Classification for the Atlantic SlippersnailKingdomAnimaliaPhylumMolluscaClassGastropodaOrderLittorinimorphaFamilyCalyptraeidaeGenusCrepidulaSpeciesC. fornicataI pulled this card for several reasons. First it has the cutest little veliger larvae. Second, it is all over the place here in Long Island Sound. And lastly, it is a prime example of a reproduction strategy that is comparatively rare in the animal world in general, but much less so in molluscs: protandrous sequential hermaphroditism. You may recall Dr. M's recent post, "Who likes protandric hermaphrodites?", in which he described the strategy, while reporting new findings about Idas washingtonia, a deep-sea clam.Like I. washingtonia, the Atlantic Slippersnail (Crepidula fornicata), is a protandric sequential hermaphrodite. While they strongly resemble limpets externally, and are often called slipper limpets, they are indeed gastropods that are common inhabitants of the sub– to intertidal area of New England rocky coasts where they are often found in stacks, like the one pictured, from 3 to 20 individuals. Unfortunately, they are also an invasive species becoming all too common in areas outside its native range, where their filter feeding capabilities may negatively affect native and aquacultured filter feeding molluscs.As Dr. M described in his post, many protandrous sequential hermaphrodites change sex based on size. A prevailing theory (the size-advantage hypothesis) predicts that a species will change its sex at a particular size that allows the individual higher reproductive success. Generally, this means smaller Atlantic Slippersnails are males and larger ones are females. It is energetically expensive for females to produce large, energy–rich eggs. It is very common in the marine realm that older, larger females produce more eggs of larger size and higher quality with resultant higher success rates. For guys to produce sperm is a comparatively inexpensive expenditure of energy. Even a wee lad can produce enough sperm of suitable quality to reproduce successfully. (Whether or not a female will have him, of if his sperm can out compete a larger male's sperm, is a different issue.)C. fornicata follows this trait — for the most part. When the planktonic veliger larvae metamorphose and settle to the bottom, they are attracted to chemical cues produced by the adults. This guides most settling juveniles to land on, or very near, existing individuals or stacks. They then make their way (ever slowly) to the top of the stack and mature into young males. In paternity studies the oldest, largest males (sometimes the same size as females) are responsible for the majority of the viable larvae from females in the stack (upwards of 83% of larvae coming from one father). Younger males further up the stack do have some successes, though, and the more males (and more larger males) in a stack the more sperm competition appears to play a significant role in each individual's success and the less dominant the dominant male becomes. At a certain point these large dominant males may be better off as females sharing the reproductive success among a few females instead of many highly competitive males.If a settling juvenile misses the chemical cues or for some other reason does not stack onto an existing individual or group, it will mature through a very brief male phase then become female, hopefully attracting juveniles from the next batch to settle on to it. [...]

Wading in with Urosalpinx cinerea


As we pull into NYC on the Amtrack for a science filled weekend, Mrs. S's class in Rhode Island have gotten fully funded for their new waders as part of the Oceans in the Classroom Challenge. Hopefully they are thinking about getting in some clamming very soon! While they are out there wading in the beautiful coastal waters of Rhode Isalnd, they will no doubt see many Atlantic Oyster Drills as well since Urosalpinx cinerea is a pretty common sight around here (here being eastern Connecticut and Rhode Island). Unfortunately it is also becoming more common on the west coast in areas like Puget Sound where it is an invasive species, as well as being a nuisance to oyster fisheries on both coasts. Even though it is a nuisance to mollusc fisheries and aquaculture, I can't help but like this particular carnivorous gastropod. It lives in the harsh intertidal zone, an area where it may well probably the most effective hunter. It "smells" out it's prey in the water: young oysters, young clams, or the thinner shelled blue mussels. Once located the one inch predator climbs onto its prey and grabs it firmly with its foot. Then the drilling begins.Using its radula, a ribbon like organ with rows of tiny teeth on it, the oyster drill rasps away at the shell, scraping bits of the calcium shell. After rasping for a time the oyster drill brings out its secret weapon, the accessory boring organ (ABO). The oyster drills use of the ABO was described originally by Mel Carriker while he was a graduate student in the late 1930's early 1940's, we have featured his video and explanation of the drilling before (highly recommended!). Between 1 minute raspings with the radula the drill presses the ABO against the drilling site for 30 minutes, releasing calcium dissolving acid to soften the next layer of shell and make the drilling easier. Depending on the thickness of the preys shell, the process may take upwards of a day to complete. Yes the oyster drill is persistent! allowFullScreen='true' webkitallowfullscreen='true' mozallowfullscreen='true' width='320' height='266' src='' class='b-hbp-video b-uploaded' FRAMEBORDER='0' />Once through the shell the oyster drill inserts its proboscis through the hole and releases digestive enzymes into the prey shell ans slurps the resulting liquefied meat back up through the hole via its proboscis.Another cool detail about the oyster drill is that unlike most other gastropods, the oyster drill does not have a planktonic larval stage. The oyster drill lays its eggs that each have up to 12 young in them under rocks and shells. The young snails eat their way out of the eggs and look like miniature adults. [...]

Iceland Scallop


Time to celebrate the funding of Mrs. M.'s project, Coral Reef Flip Books, part of the Ocean Bloggers Oceans in the Classroom Initiative. Yesterday I asked for input on which card to feature, and the results are in: with 33.33% of the "vote" the Scallop of Hearts gets the next preview here. I should note that the picture on this card is likely to change before the final version, when we hopefully will get an image of a live animal without too many epibionts (organisms that live on the surface of another living organism, generally a commensal relationship) on the valves.Classification for the Icelandic ScallopKingdomAnimaliaPhylumMolluscaClassBivalviaOrderOstreoidaFamilyPectinidaeGenusChlamysSpeciesC. islandicaRangeIt is thought that the Chlamys genus originated in the Pacific and expanded into the Atlantic. Fossil Chlamys shells have been found dating to the Miocene in California. In the Atlantic ocean fossilized shells of the Icelandic scallop (Chlamys islandica) have been found from the late Pliestocene, when it ranged as far south as Long Island in the west Atlantic and to the Mediterranean in the east. Today it is found from Hudson Bay to Cape Cod in the western Atlantic and along the coast of Norway in the eastern Atlantic. It is also found in the fjords and waters of western Greenland and Iceland.The Iceland Scallop (C. islandica) is the northernmost occurring of the major commercial species in the Pectinidae family, occurring in sub-arctic waters of the Atlantic. Several similar species, once thought to be subspecies of C. islandica, are found in similar areas of the sub-polar Pacific. In many areas of C. islandica's range, it is, or has been, a major fishery species. In recent years however in much of its range the fisheries have collapsed. FisheriesIn most of Norway the fishery for the Icelandic scallop suffered complete collapse in just three seasons and has only recovered in one location. In Iceland the stock is (as of 2008) only at 13% or less of its size just one decade earlier. The causes of the rapid decline in Iceland have been investigated by several researchers. They have determined that overfishing has had a strong impact on the stocks, but the effect has been magnified because of two environmental factors. A protozoan parasite is affecting large numbers of adults, causing increased adult mortality. Sea bottom water temperatures have increased more than 2°C, possibly contributing to both adult mortality and very poor juvenile recruiting years for the past four years, take a moment to think of the implications of climate change for this species. Because of all this, the fishery was recommended for closure in the 2009 and 2010 seasons. North American stocks have not fared much better in recent years, with strong declines in stocks. The sharp stock declines worldwide coupled with the fact that they are only wild-fished using dredges, which extensively alter the hard bottom habitats where they live, have caused organizations, such as the Blue Ocean Institute, to recommend avoiding this particular species when possible.BiologyIcelandic scallops have separate sexes (gonochoristic) from birth, whereas most scallop species are hermaphrodites. Reproduction is by broadcast spawning, which is cued by rising ocean temperatures in June and July. After 6-10 weeks of floating as planktonic life, the larvae settle to hard sand and gravel surfaces. When settling they preferentially attach to dead hydroids, live hydroids, and algae using byssus threads.Growth rate varies seasonally, by age, and across the species range, but the scallops generally reach maturity at 5 or 6 years old and can live in excess of 23 years.Icelandic scallops are largely sedentary, often with large and dense coatings of epibionts, such as sponges and tube worms. One thing[...]

Pick a Card, Any Card


Another of the Ocean Challenge in the Classroom projects has been fully funded! So...
Pick a card any card, leave your pick in a comment or as a tweet to @eclecticechoes. The card with the most choices (or in a tie a random choice among the tied) will be featured here tomorrow.(image)

Nautilus Night - Cephalopod of Diamonds


Ok. I said for each of the Ocean in the Classroom projects fully funded I would put up a post about one invert from the deck of cards I have been working on, along with a sneak peak at a card. So, since the Making Waves, Oceans and Landforms got fully funded, and in honor of Nautilus Night I bring you the Cephalopod of Diamonds - The Chambered Nautilus.Classification for the Chambered NautilusKingdomAnimaliaPhylumMolluscaClassCephalopodaOrderNautilidaFamilyNautilidaeGenusNautilusSpeciesN. belauensisSome interesting facts about the chambered nautilus (and other extant nautiloids):The 6-7 (there is still debate on the status of one species) extant species of nautilus come from two genera, the 4-5 smooth nautilus'(genus Nautilus) and the 2 species of hairy nautilus (genus Allonautilus - literally "other nautilus").They are the only remaining cephalopods that retain an external shell, which they use for defense and as a buoyancy control system. The shell, with buoyancy control, was a significant weapon evolutionarily, as it afforded the early cephalopods the protection of a thick shell yet the advanced buoyancy control unchained them from the sea floor as most of the periods marine arthropods were. Modern nautilus are generally found on steep coral reef slopes at a depth of 200-400m during the day. They rise at night to feed near or at the surface, using the adjustable buoyancy of their gas filled shells to good effect during the vertical migration.Unlike other cephalopods, the nautilus do not have a lensed eye. The nautilus eye is more like a pinhole camera, leading to the hypothesis that it uses olfaction to find it's prey (mostly shrimp and other crustaceans along with some small fish.)Nautiloids also have upwards of 90 tentacles (compare with 8 arms of octopods and 8 arms an two tentacles of squid and cuttlefish.)Last bit for this post is their lifespan and reproduction. Most cephalopods are short lived with overall lifespans of even the Giant Pacific Octopus being around 2-3 years. For most studied cephalopods natural death from old age occurs after mating, (and for females egg guarding), which is only done once (called semelparity). Nautilus can live in 15-20 years and mate year after year (iteroparity). The nautilus are the ancient lineage of the cephalopods, descendants of and most like the orthocerids and other nautiloids that were a major predator of the seas in the Ordovician period. Modern nautiloids are the only cephalopods that retain their external shell and are often considered to be "living fossils" as they are very similar in appearance to the ammonites and nautiloids that emerged half a billion years ago in the Cambrian. However recent molecular studies are casting some doubt on the appropriateness of the "living fossil" moniker. Studies published in the past couple years have revealed that the 6-7 extant species of nautilus evolved much more recently, around 2 million years ago, in the seas around New Guinea. They then Sinclair, B., Briskey, L., Aspden, W., & Pegg, G. (2006). Genetic diversity of isolated populations of Nautilus pompilius (Mollusca, Cephalopoda) in the Great Barrier Reef and Coral Sea Reviews in Fish Biology and Fisheries, 17 (2-3), 223-235 DOI: 10.1007/s11160-006-9030-x [...]

Ocean in the Classroom Challenge


Today's a big outreach day!

First up, an outreach project I that has been part of my life for the past year is finally coming to be. This afternoon I will finally see the professionally printed version of my deck of cards that will be used to help teach molluscan diversity. They are still prototypes so I can't show them here just yet. Hopefully soon I can highlight a few of the cards along with some discussion about the animals on them and the process of making them. I am looking forward to hearing from the COSEE particpants at Avery Point who will be getting a sneak peak at them today through Saturday.

On a much larger scale Dr. M and Kevin have gathered together many of the top ocean bloggers to support some serious K-12 education outreach: Ocean in the Classroom Challenge. I just looked through the challenge and there are seven great projects in there, including several that are aquatic invertebrate centered. Personally I love the Invertebrates in my Tank, Waders and Coral Flip Book projects because they touch close to home, so to speak.

I would take the website hostage like the DSN boys are doing, but that won't work so well here where it has been so quiet lately. However, maybe the opposite will work, for each project that gets fully funded I'll put up a post on recent research about one of animals featured in the card decks.(image)

Channeled Whelk with Egg Cases


Channeled Whelk with Egg Cases, originally uploaded by eclectic echoes.Family friends bought us passes for Project Oceanology's Enviro Lab cruises at an auction this summer, and finally, as the summer draws to a close, we were able to take advantage of them. Project O is an outreach center that focuses on marine science and environmental awareness especially of the Long Island Sound ecosystem. Their Enviro Lab boats are equipped with a small sample trawl, water quality samplers and sediment samplers. I had been on the Enviro Lab boats with classes from the Marine Science undergraduate program at Avery Point (Project O is located on the Avery Point Campus). For Johann and Tammy it was a new and exciting adventure. Johann's favorite part was examining the results of the benthic sample trawl. After seeing the Mystic Whaler (Which chanteyman extraordinaire Geoff Kaufman often sails aboard) he was inspired to sing a round of "Donkey Riding" as he reeled in the line from the trawl. The fun really started when he got to get really hands on with the samples helping quickly sort the haul and get all the animals into the large wet tanks. In the haul were a dozen Scup (Stenotomus chrysops), several Sea Robin (Prionotus carolinus), some Atlantic Moonfish juveniles (Selene setapinnis), what looked like a small striped bass (I didn't get to see it but that was the description), a feisty female little skate (Leucoraja erinacea) and a spotted hake (Urophycis regia).While there was quite a number of vertebrates in the haul, there were far more inverts brought up. Among the inverts there were in excess of a hundred spider crabs (Libinia emarginata), two lobster (Homarus americanus,)(both female), two European Green Crabs (Carcinus maenas), one Jonah Crab (Cancer borealis), several broad-clawed hermit crabs (Pagurus pollicaris) and one male Horseshoe crab (Limulus polyphemus). Molluscs were well represented as well with many mud snails (Nassarius obsoletus) and slipper shells (Crepidula fornicata)as well as a half dozen loligo squid. The real prize though was this female channeled whelk (Busycotypus canaliculatus formerly Busycon canaliculatus). Johann spotted her and pointed out the fact she was currently "laying" and egg case string. Soon after the animals were sorted into the tanks, the guide showed the whelk and explained the egg case string to the guests, then she carefully (more or less) dropped the whelk back into the sound.The main reproductive time for the channeled whelks is the fall. Egg strings like the one this lady is laying will consist of 40-160 or more egg cases all joined by a tough leathery string. Each case may have as many as 100 eggs inside, though the average number of eggs per case is closer to 40. Not all the eggs in each case are fertilized though and the unfertilized eggs serve as food for the young whelks which emerge from the cases as miniature adults.There is a small fishery for whelks here in the Long Island Sound, mostly sold in Italian markets as scungili. Unfortunately the most common bait used is chopped up horseshoe crab.Life Photo Meme [...]

A Cool New Backyard Visitor!


One of the joys about moving, and there are but few, is discovering the new critters inhabiting your property! My wife found this Spinybacked Orbweaver hard at work in our yard yesterday.

(image) (image)

Zoanthid Histology


I uploaded some histology of a new zoanthid for collaborators in Japan to look at. Flickr is a great tool for sharing images and now I've found a work-related use for it! I don't have anything labeled but the descriptions for each image tell you what it is. The blue globby things are forams. Zoanthids are known to incorporate sand and sediment into their body wall to make them more rigid. As you can see from some of the cross sections, the mesenteries have very weak musclature. The staining protocol I used is called Masson's trichrome. Red stains for acidic tissues, like muscle fibers, while blue stains for basic tissues, such as connective tissue.

(object) (embed) (image)

Wear your Invert


We made our annual pilgrimage to a shopping mall the other day to visit the Apple Store (Closed for renovations!) and the tea store. On our way out Tammy spied some cool earings hanging in a small shop. What caught her eye from outside the store was the blue heron Cloisonné earrings. Once inside though she fell for the Monarch Butterflies. Today when I got home she showed me the creators website Tammy was psyched that they had nudibranch pins and earrings!

Actually they have a nice collection of marine and terrestrial invertebrates.

A persfect gift for your invert lover (take that however you need to!) or for yourself. Of course if you insist on having relations with a porpoise, Bamboo has you covered there too. But seriously wouldn't you rather wear a nudi?
(image) (image)

The Deepest Cuke


A WHOI summer student fellow, holding one of the deepest sea cucumbers ever found, recovered from the Mariana Trench. Stunning to think of this little echinoderm living 9,000-11,000m down with pressures of 16,000psi or more. Image copyright WHOI.

The deep exploration buzz online lately has justifiably been about the hopefully avoidable, premature retirement of the JSL manned subs – read up on the issue at Deep Sea News, then SIGN UP to try and save them – but there is another vehicle out there right now that deserves some praise: Nereus.

Out of Woods Hole, Nereus is an ROV designed from the ground up to go to the absolute depths of the oceans. On the 31st of May, it went all the way to the bottom of the Challenger Deep, the deepest spot in the oceans at 10,902m. Nereus is now the only currently operating vehicle to explore the Mariana Trench and only the third in history to have done so: the manned Trieste in 1960 and the ROV Kaiko in 1995-1998. Read more about the technological hurdles involved in designing and building Nereus, along with it's maiden voyage to the bottom of the seas. The very bottom.(image)

Circus of the Spineless #39 Is Up!



Bug Girl's Blog is the host of this months Circus of the Spineless! Marine inverts represent with bivalves, crayfish and jellies. Also plenty of insects and arachnids for your viewing pleasure as well. Enjoy some fine nature writing and photography!(image)

JSLs: Deep Diving Invert Friends in Need!


In case you haven't heard form Deep Sea News or Pharyngula (or my own post at Eclectic Echoes), the Johanson Sea Link manned submersibles have been slated for retirement and their tender ship the R/V Seward Johnson put up for sale. Kevin and I hope you will join us in signing a petition to the powers that be in Florida to reconsider this decision and seek every opportunity find funding for them as a vital asset for science and the state.The Johnson Sea Link submersiblesThe JSL submersibles (Johnson Sea Link I and Johnson Sea Link II) are unique manned submersibles that were designed and built at Harbor Branch Oceanographic Institute in the 1970's. JSL I was launched in 1971 and JSL II launched in 1975. The submersibles were built around a 6' diameter, 5.25" thick acrylic sphere that serves as the cockpit and main viewing area, where the pilot and chief dive scientist sit. In the sphere they have a stunning 270+ degree field of view. The aft cabin was originally designed to carry lockout divers (used to survey the USS Monitor, but was converted to a secondary observation cabin which can carry a second crew member and scientist.While these were both launched over 30 years ago, they are among the youngest manned submersibles in the US science fleet, and they are still quite capable, having logged over 9000 dives during the years and having quite a busy schedule for the remaining year.But Why Should Invertebrates (and invert lovers) Care?Well, how about some invertebrate highlights from the JSL career:In 1975 JSL I discovered the Oculina Bank. An incredible deep water coral reef off of Florida. The JSL crews have returned there frequently and their work led to designation of the Oculina Bank Habitat Area of Particular Concern and the Oculina Bank Expermental Closed Area. Further work by scientists on JSL missions have enumerated the ecology of these reefs including hundreds of invert species which hide among the coral branches and spaces.Mapping and exploration by JSL led to protection on sections of Lophelia reefs.By my rough count reading abstracts only from a Google Scholar search the JSLs are were instrumental in the discovery and collection of at least 100 new marine invertebrate species and at least one new fresh water decapod. (I'd love to get a firmer number on this, I wonder if anyone from HBOI knows?)Discovered methane-consuming worms and clams in methane lakesDiscovered a number of sponges with chemical compounds capable of halting the growth of human cancersAnd that's just a start from someone who is not affiliated with the Sea Link program at HBOI, I wonder how much more they could provide.Of course there are many non-invertebrate reasons to care as well. There are only 16 manned research submersibles in operation around the world, 8 in the United States. These two, with their unique capabilities would be quite a loss. Whats more the outreach and future explorer excitment value of the JSL's is huge. To put it in NASA geek terms, ROV's are the Delta-V orbital launch vehicles (e.g. "rocket") and manned submersibles such as Alvin and the JSL's are the Space Shuttles of underwater exploration.So head over to Deep Sea News and read the first hand accounts of the JSLs from Dr. M and Kevin. While you're at it check out Southern Fried Scientist's question "Manned or Unmanned?" and a bit of my response to that question can be found in my post at Eclectic Echoes. But no matter what else you do, please read the petition and sign it if you agree with us that[...]

Warty Sea Star


Warty sea star, originally uploaded by sbailliez.

Now this is a cool looking sea star!

Of course the questions start racing through the head -
What are the warts?
What purpose do they serve, if any?
Why are some distended from the body and others not?
Do the warts have pedicellariae ?



Tiny Friends


We found an ootheca recently, and brought it in to watch the hatching of 85+ tiny (less than 1cm long) mantids. They have now taken up residence in the garden hopefully keeping the early spring aphids at bay.


SpeciesDay - Unionidae


It's been a bit quieter around here than Kevin and I prefer, but now the finals are all done and I can finally say "I can has cheezburger wit dat?"Seriously though, in the next month or so there will be some changes in this space... in the mean time:Did you know there are 198 199 invertebrates listed under the Endangered Species Act? Yep, inverts make up 34% of the 575 animals protected under ESA. But is this good or bad that inverts are underrepresented here?? Care to guess how many of those 198 199 are molluscs? I'll give you a starting point - only two of the 198 199 invert species protected under ESA are cnidarians. Elkhorn Coral (Acropora palmata) and Staghorn Coral (Acropora cervicornis) are listed as Threatened. First correct answer, gets a small hand made tote bag free (allow 3-4 weeks for creation and delivery though!)Today, May 15th is Endangered Species Day, and the the net was all atwitter with postings and tweets about endangered species. I just got done with the prototype for an outreach product that includes some of those endangered molluscs so I tweeted out the Shinyrayed Pocketbook (Lampsilis subangulata) a member of that marvelous group of freshwater mussels, the Unionidae. If you recall from our earlier posting, this is the group of freshwater bivalves that has the habit of spitting its spawn into the face of an unsuspecting fish. The spawn are technically a form of larvae unique to these mussels called the glochidia and for some reason all my vertebrate loving friends seem to think that the whole "spewing spawn in your face" technique is rather disturbing. The young molluscs that are now in the face and mouth of the hapless fish attach to the its gills and encyst there. They feed on the blood in the gills until they are ready to drop to the sediments and metamorphose into a full adult form.The shiney-rayed pocketbook is found in Alabama, Florida and Georgia, mainly in the Chattahoochie and Flint rivers. In its most recent review it was assessed as endangered with a recovery priority of 5 (high threat and low potential for recovery). The good news though is that from 2003 to 2007 the range of the Shiney-rayed Pocketbook did extend into more of the river than it had been in recent years. The shiney-rayed pocketbook handles the details of reproduction and larval distribution a little differently than our last Unionoida. Our last fresh water mollusc, the Snuffbox, lures a fish in with it's mantle flaps which look like a small fish. When the fish attacks the lure, the snuffbox springs its trap, catching the logperch's head between it's valves. It then uses it's mantle to smother the fish for a few moments. When it releases the smothering hold on the fish a little, it also releases it's glochidia which is has been brooding in the shell. The fish gasps for water (air) and gets water and glochidia.The shiney-ray takes another very interesting tack at larval distribution. Its females also brood the young until they reach the glochidia stage then release them to parasitise largemouth bass (Micropterus salmoides) and spotted bass (M. punctatus). The season for releasing glochidia will be begin in just a few weeks, late May through August.) The females, create a superconglutinate, a group of large packets (conglutiates) of glochidia attached to what appears to be a long transparent mucus rope. The superconglutinate strongly resembles a small fish, which lures in large[...]