Subscribe: Journal of Experimental Botany - Advance Access
Preview: Journal of Experimental Botany - Advance Access

Journal of Experimental Botany Advance Access

Published: Tue, 19 Sep 2017 00:00:00 GMT

Last Build Date: Tue, 19 Sep 2017 03:49:15 GMT


Plant exosomes: using an unconventional exit to prevent pathogen entry?


The ability to ward off filamentous pathogens, such as powdery mildew fungi, is one of the best studied examples of membrane trafficking-dependent disease resistance in plants. Here, papilla formation at the site of attack is essential for the pre-invasive immunity, whereas the encasement can hamper disease post-invasively. Exosomes containing antifungal peptides and small RNAs are thought to play a vital role in forming papillae and encasements that block fungal growth. While exosomes are well described in mammals, and have been shown to play important roles in cell–cell communication regulating development and disease, their function is not well-known in plants. In this review, we focus on some of the recent discoveries on plant exosomes and try to link this information with our current understanding of how plants use this form of unconventional secretion to acquire this durable and effective form of resistance.

EjNAC3 transcriptionally regulates chilling-induced lignification of loquat fruit via physical interaction with an atypical CAD-like gene


Lignin is an important component of many plant secondary cell walls. In the fruit of loquat (Eriobotrya japonica), lignification of cell walls in the fleshy tissue occurs when fruit are subjected to low-temperature storage, which is commonly used to avoid the rapid senescence that occurs at room temperature. In this study, two NAC domain genes, EjNAC3 and EjNAC4, were isolated and shown to be significantly induced at 0 °C, which was concomitant with an increase in the fruit lignification index. Lignification and expression of both EjNAC3 and EjNAC4 were inhibited by low-temperature conditioning and by heat treatment. In addition, EjNAC3 trans-activated the lignin biosynthesis-related EjCAD-like promoter, which was measured using a dual-luciferase assay. Further analysis with yeast one-hybrid and electrophoretic mobility shift assays indicated that EjNAC3 could physically bind to the promoter of the EjCAD-like gene. Thus, EjNAC3 is a direct regulator of loquat chilling-induced lignification, via regulations of EjCAD-like.