Subscribe: Circulation Research current issue
http://circres.ahajournals.org/rss/current.xml
Added By: Feedage Forager Feedage Grade B rated
Language: English
Tags:
cardiac  cell  cells  dna elements  elements  expression  human  million  patients  regulatory dna  regulatory  stem cells  stem 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: Circulation Research current issue

Circulation Research current issue



Circulation Research RSS feed -- current issue



 









In this Issue [In This Issue]

2017-11-09T10:40:27-08:00



















Onur Kanisicak [Trainees in the Spotlight]

2017-11-09T10:40:27-08:00







P2Y2 Nucleotide Receptor Prompts Human Cardiac Progenitor Cell Activation by Modulating Hippo SignalingNovelty and Significance [Cellular Biology]

2017-11-09T10:40:27-08:00

Rationale:Autologous stem cell therapy using human c-Kit+ cardiac progenitor cells (hCPCs) is a promising therapeutic approach for treatment of heart failure (HF). However, hCPCs derived from aged patients with HF with genetic predispositions and comorbidities of chronic diseases exhibit poor proliferative and migratory capabilities, which impair overall reparative potential for injured myocardium. Therefore, empowering functionally compromised hCPCs with proregenerative molecules ex vivo is crucial for improving the therapeutic outcome in patients with HF.Objective:To improve hCPC proliferation and migration responses that are critical for regeneration by targeting proregenerative P2Y2 nucleotide receptor (P2Y2R) activated by extracellular ATP and UTP molecules released following injury/stress.Methods and Results:c-Kit+ hCPCs were isolated from cardiac tissue of patients with HF undergoing left ventricular assist device implantation surgery. Correlations between P2 nucleotide receptor expression and hCPC growth kinetics revealed downregulation of select P2 receptors, including P2Y2R, in slow-growing hCPCs compared with fast growers. hCPC proliferation and migration significantly improved by overexpressing or stimulating P2Y2R. Mechanistically, P2Y2R-induced proliferation and migration were dependent on activation of YAP (yes-associated protein)—the downstream effector of Hippo signaling pathway.Conclusions:Proliferation and migration of functionally impaired hCPCs are enhanced by P2Y2R-mediated YAP activation, revealing a novel link between extracellular nucleotides released during injury/stress and Hippo signaling—a central regulator of cardiac regeneration. Functional correlations exist between hCPC phenotypic properties and P2 purinergic receptor expression. Lack of P2Y2R and other crucial purinergic stress detectors could compromise hCPC responsiveness to presence of extracellular stress signals. These findings set the stage for subsequent studies to assess purinergic signaling modulation as a potential strategy to improve therapeutic outcome for use of hCPCs in patients with HF.



Cell Type-Specific Chromatin Signatures Underline Regulatory DNA Elements in Human Induced Pluripotent Stem Cells and Somatic CellsNovelty and Significance [Cellular Biology]

2017-11-09T10:40:27-08:00

Rationale:Regulatory DNA elements in the human genome play important roles in determining the transcriptional abundance and spatiotemporal gene expression during embryonic heart development and somatic cell reprogramming. It is not well known how chromatin marks in regulatory DNA elements are modulated to establish cell type–specific gene expression in the human heart.Objective:We aimed to decipher the cell type–specific epigenetic signatures in regulatory DNA elements and how they modulate heart-specific gene expression.Methods and Results:We profiled genome-wide transcriptional activity and a variety of epigenetic marks in the regulatory DNA elements using massive RNA-seq (n=12) and ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing; n=84) in human endothelial cells (CD31+CD144+), cardiac progenitor cells (Sca-1+), fibroblasts (DDR2+), and their respective induced pluripotent stem cells. We uncovered 2 classes of regulatory DNA elements: class I was identified with ubiquitous enhancer (H3K4me1) and promoter (H3K4me3) marks in all cell types, whereas class II was enriched with H3K4me1 and H3K4me3 in a cell type–specific manner. Both class I and class II regulatory elements exhibited stimulatory roles in nearby gene expression in a given cell type. However, class I promoters displayed more dominant regulatory effects on transcriptional abundance regardless of distal enhancers. Transcription factor network analysis indicated that human induced pluripotent stem cells and somatic cells from the heart selected their preferential regulatory elements to maintain cell type–specific gene expression. In addition, we validated the function of these enhancer elements in transgenic mouse embryos and human cells and identified a few enhancers that could possibly regulate the cardiac-specific gene expression.Conclusions:Given that a large number of genetic variants associated with human diseases are located in regulatory DNA elements, our study provides valuable resources for deciphering the epigenetic modulation of regulatory DNA elements that fine-tune spatiotemporal gene expression in human cardiac development and diseases.



Lactate Promotes Synthetic Phenotype in Vascular Smooth Muscle CellsNovelty and Significance [Cellular Biology]

2017-11-09T10:40:27-08:00

Rationale:The phenotypes of vascular smooth muscle cells (vSMCs) comprise a continuum bounded by predominantly contractile and synthetic cells. Some evidence suggests that contractile vSMCs can assume a more synthetic phenotype in response to ischemic injury, but the mechanisms that activate this phenotypic switch are poorly understood.Objective:To determine whether lactate, which increases in response to regional ischemia, may promote the synthetic phenotype in vSMCs.Methods and Results:Experiments were performed with vSMCs that had been differentiated from human induced pluripotent stem cells and then cultured in glucose-free, lactate-enriched (L+) medium or in standard (L−) medium. Compared with the L− medium, the L+ medium was associated with significant increases in synthetic vSMC marker expression, proliferation, and migration and with significant declines in contractile and apoptotic activity. Furthermore, these changes were accompanied by increases in the expression of monocarboxylic acid transporters and were generally attenuated both by the blockade of monocarboxylic acid transporter activity and by transfection with iRNA for NDRG (N-myc downstream regulated gene). Proteomics, biomarker, and pathway analyses suggested that the L+ medium tended to upregulate the expression of synthetic vSMC markers, the production of extracellular proteins that participate in tissue construction or repair, and the activity of pathways that regulate cell proliferation and migration. Observations in hypoxia-cultured vSMCs were similar to those in L+-cultured vSMCs, and assessments in a swine myocardial infarction model suggested that measurements of lactate levels, lactate-dehydrogenase levels, vSMC proliferation, and monocarboxylic acid transporter and NDRG expression were greater in the ischemic zone than in nonischemic tissues.Conclusions:These results demonstrate for the first time that vSMCs assume a more synthetic phenotype in a microenvironment that is rich in lactate. Thus, mechanisms that link glucose metabolism to vSMC phenotypic switching could play a role in the pathogenesis and treatment of cardiovascular disease.



Cortical Bone Stem Cell Therapy Preserves Cardiac Structure and Function After Myocardial InfarctionNovelty and Significance [Integrative Physiology]

2017-11-09T10:40:27-08:00

Rationale:Cortical bone stem cells (CBSCs) have been shown to reduce ventricular remodeling and improve cardiac function in a murine myocardial infarction (MI) model. These effects were superior to other stem cell types that have been used in recent early-stage clinical trials. However, CBSC efficacy has not been tested in a preclinical large animal model using approaches that could be applied to patients.Objective:To determine whether post-MI transendocardial injection of allogeneic CBSCs reduces pathological structural and functional remodeling and prevents the development of heart failure in a swine MI model.Methods and Results:Female Göttingen swine underwent left anterior descending coronary artery occlusion, followed by reperfusion (ischemia–reperfusion MI). Animals received, in a randomized, blinded manner, 1:1 ratio, CBSCs (n=9; 2×107 cells total) or placebo (vehicle; n=9) through NOGA-guided transendocardial injections. 5–ethynyl–2′deoxyuridine (EdU)—a thymidine analog—containing minipumps were inserted at the time of MI induction. At 72 hours (n=8), initial injury and cell retention were assessed. At 3 months post-MI, cardiac structure and function were evaluated by serial echocardiography and terminal invasive hemodynamics. CBSCs were present in the MI border zone and proliferating at 72 hours post-MI but had no effect on initial cardiac injury or structure. At 3 months, CBSC-treated hearts had significantly reduced scar size, smaller myocytes, and increased myocyte nuclear density. Noninvasive echocardiographic measurements showed that left ventricular volumes and ejection fraction were significantly more preserved in CBSC-treated hearts, and invasive hemodynamic measurements documented improved cardiac structure and functional reserve. The number of EdU+ cardiac myocytes was increased in CBSC- versus vehicle- treated animals.Conclusions:CBSC administration into the MI border zone reduces pathological cardiac structural and functional remodeling and improves left ventricular functional reserve. These effects reduce those processes that can lead to heart failure with reduced ejection fraction.



Dose Comparison Study of Allogeneic Mesenchymal Stem Cells in Patients With Ischemic Cardiomyopathy (The TRIDENT Study)Novelty and Significance [Clinical Track]

2017-11-09T10:40:27-08:00

Rationale:Cell dose and concentration play crucial roles in phenotypic responses to cell-based therapy for heart failure.Objective:To compare the safety and efficacy of 2 doses of allogeneic bone marrow–derived human mesenchymal stem cells identically delivered in patients with ischemic cardiomyopathy.Methods and Results:Thirty patients with ischemic cardiomyopathy received in a blinded manner either 20 million (n=15) or 100 million (n=15) allogeneic human mesenchymal stem cells via transendocardial injection (0.5 cc per injection × 10 injections per patient). Patients were followed for 12 months for safety and efficacy end points. There were no treatment-emergent serious adverse events at 30 days or treatment-related serious adverse events at 12 months. The Major Adverse Cardiac Event rate was 20.0% (95% confidence interval [CI], 6.9% to 50.0%) in 20 million and 13.3% (95% CI, 3.5% to 43.6%) in 100 million (P=0.58). Worsening heart failure rehospitalization was 20.0% (95% CI, 6.9% to 50.0%) in 20 million and 7.1% (95% CI, 1.0% to 40.9%) in 100 million (P=0.27). Whereas scar size reduced to a similar degree in both groups: 20 million by −6.4 g (interquartile range, −13.5 to −3.4 g; P=0.001) and 100 million by −6.1 g (interquartile range, −8.1 to −4.6 g; P=0.0002), the ejection fraction improved only with 100 million by 3.7 U (interquartile range, 1.1 to 6.1; P=0.04). New York Heart Association class improved at 12 months in 35.7% (95% CI, 12.7% to 64.9%) in 20 million and 42.9% (95% CI, 17.7% to 71.1%) in 100 million. Importantly, proBNP (pro-brain natriuretic peptide) increased at 12 months in 20 million by 0.32 log pg/mL (95% CI, 0.02 to 0.62; P=0.039), but not in 100 million (−0.07 log pg/mL; 95% CI, −0.36 to 0.23; P=0.65; between group P=0.07).Conclusions:Although both cell doses reduced scar size, only the 100 million dose increased ejection fraction. This study highlights the crucial role of cell dose in the responses to cell therapy. Determining optimal dose and delivery is essential to advance the field, decipher mechanism(s) of action and enhance planning of pivotal Phase III trials.Clinical Trial Registration:URL: http://www.clinicaltrials.gov. Unique identifier: NCT02013674.