Subscribe: Human Molecular Genetics - Advance Access
http://hmg.oxfordjournals.org/rss/ahead.xml
Added By: Feedage Forager Feedage Grade B rated
Language: English
Tags:
arg pro  arg  copb  function  glaucoma  levels  mice  mutant mice  nrf  patients  pbx  peptides  poag  sequence variants  sequence  variants 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: Human Molecular Genetics - Advance Access

Human Molecular Genetics Advance Access





Published: Fri, 22 Sep 2017 00:00:00 GMT

Last Build Date: Fri, 22 Sep 2017 22:44:36 GMT

 



Peptides of the variable IgG domain as potential biomarker candidates in primary open-angle glaucoma (POAG)

2017-09-22

Abstract
Autoantibody profiling has gained increasing interest in the research field of glaucoma promising the detection of highly specific and sensitive marker candidates for future diagnostic purposes. Recent studies demonstrated that immune responses are characterized by the expression of congruent or similar complementarity determining regions (CDR) in different individuals and could be used as molecular targets in biomarker discovery. Main objective of this study was to characterize glaucoma-specific peptides from the variable region of sera-derived immunoglobulins using liquid chromatography – mass spectrometry (LC-MS) – based quantitative proteomics. IgG were purified from sera of 13 primary open-angle glaucoma patients (POAG) and 15 controls (CTRL) and subsequently digested into Fab and Fc by papain. Fab was further purified, tryptic digested and measured by LC–MS/MS. Discovery proteomics revealed in total 75 peptides of the variable IgG domain showing significant glaucoma-related level changes (p ≤ 0.05; log2 fold change ≥ 0.5): 6 peptides were high abundant in POAG sera, whereas 69 peptides were low abundant in comparison to CTRL group. Via accurate inclusion mass screening (AIMS) strategy 28 IgG V domain peptides were further validated showing significantly decreased expression levels in POAG sera. Amongst others 5 CDR1, 2 CDR2 and 1 CDR3 sequences. In addition, we observed significant shifts in the variable heavy chain family distribution and disturbed κ/λ ratios in POAG patients in contrast to CTRL. These findings strongly indicate that glaucoma is accompanied by systemic effects on antibody production and B cell maturation possibly offering new prospects for future diagnostic or therapy purposes.



De novo , deleterious sequence variants that alter the transcriptional activity of the homeoprotein PBX1 are associated with intellectual disability and pleiotropic developmental defects

2017-09-22

Abstract
We present eight patients with de novo, deleterious sequence variants in the PBX1 gene. PBX1 encodes a three amino acid loop extension (TALE) homeodomain transcription factor that forms multimeric complexes with TALE and HOX proteins to regulate target gene transcription during development. As previously reported, Pbx1 homozygous mutant mice (Pbx1-/-) develop malformations and hypoplasia or aplasia of multiple organs, including the craniofacial skeleton, ear, branchial arches, heart, lungs, diaphragm, gut, kidneys, and gonads. Clinical findings similar to those in Pbx mutant mice were observed in all patients with varying expressivity and severity, including external ear anomalies, abnormal branchial arch derivatives, heart malformations, diaphragmatic hernia, renal hypoplasia and ambiguous genitalia. All patients but one had developmental delays. Previously reported patients with congenital anomalies affecting the kidney and urinary tract exhibited deletions and loss of function variants in PBX1. The sequence variants in our cases included missense substitutions adjacent to the PBX1 homeodomain (p.Arg184Pro, p.Met224Lys, and p.Arg227Pro) or within the homeodomain (p.Arg234Pro, and p.Arg235Gln), whereas p.Ser262Glnfs*2, and p.Arg288* yielded truncated PBX1 proteins. Functional studies on five PBX1 sequence variants revealed perturbation of intrinsic, PBX-dependent transactivation ability and altered nuclear translocation, suggesting abnormal interactions between mutant PBX1 proteins and wild-type TALE or HOX cofactors. It is likely that the mutations directly affect the transcription of PBX1 target genes to impact embryonic development. We conclude that deleterious sequence variants in PBX1 cause intellectual disability and pleiotropic malformations resembling those in Pbx1 mutant mice, arguing for strong conservation of gene function between these two species.



Genetic reduction of Nrf2 exacerbates cognitive deficits in a mouse model of Alzheimer’s disease

2017-09-19

Abstract
Aging is the major risk factor for several neurodegenerative diseases, including Alzheimer’s disease (AD). However, the mechanisms by which aging contributes to neurodegeneration remain elusive. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a transcription factor that regulates expression of a vast number of genes by binding to the antioxidant response element. Nrf2 levels decrease as a function of age, and reduced Nrf2 levels have been reported in postmortem human brains and animal models of AD. Nevertheless, it is still unknown whether Nrf2 plays a role in the cognitive deficits associated with AD. To address this question, we used a genetic approach to remove the Nrf2 gene from APP/PS1 mice, a widely used animal model of AD. We found that the lack of Nrf2 significantly exacerbates cognitive deficits in APP/PS1, without altering gross motor function. Specifically, we found an exacerbation of deficits in spatial learning and memory, as well as in working and associative memory. Different brain regions control these behavioral tests, indicating that the lack of Nrf2 has a global effect on brain function. The changes in cognition were linked to an increase in Aβ and interferon-gamma (IFNγ) levels, and microgliosis. The changes in IFNγ levels are noteworthy as previously published evidence indicates that IFNγ can increase microglia activation and induce Aβ production. Our data suggest a clear link between Nrf2 and AD-mediated cognitive decline and further strengthen the connection between Nrf2 and AD.



Copb2 is essential for embryogenesis and hypomorphic mutations cause human microcephaly

2017-09-19

Abstract
Primary microcephaly is a congenital brain malformation characterized by a head circumference less than three standard deviations below the mean for age and sex and results in moderate to severe mental deficiencies and decreased lifespan. We recently studied two children with primary microcephaly in an otherwise unaffected family. Exome sequencing identified an autosomal recessive mutation leading to an amino acid substitution in a WD40 domain of the highly conserved Coatomer Protein Complex, Subunit Beta 2 (COPB2). To study the role of Copb2 in neural development, we utilized genome editing technology to generate an allelic series in the mouse. Two independent null alleles revealed that Copb2 is essential for early stages of embryogenesis. Mice homozygous for the patient variant (Copb2R254C/R254C) appear to have a grossly normal phenotype, likely due to differences in corticogenesis between the two species. Strikingly, mice heterozygous for the patient mutation and a null allele (Copb2R254C/Znf) show a severe perinatal phenotype including low neonatal weight, significantly increased apoptosis in the brain, and death within the first week of life. Immunostaining of the Copb2R254C/Znfbrain revealed a reduction in layer V (CTIP2+) neurons, while the overall cell density of the cortex is unchanged. Moreover, neurospheres derived from animals with Copb2 variants grew less than control. These results identify a general requirement for COPB2 in embryogenesis and a specific role in corticogenesis. We further demonstrate the utility of CRISPR-Cas9 generated mouse models in the study of potential pathogenicity of variants of potential clinical interest.



Vitamin B12 ameliorates the phenotype of a mouse model of DiGeorge syndrome

2017-09-19

Human Molecular Genetics 2016, 25, 4369–4375.