Subscribe: PLANT PHYSIOLOGY CELL BIOLOGY AND SIGNAL TRANSDUCTION
http://www.plantphysiol.org/rss/CELL_BIOLOGY_AND_SIGNAL_TRANSDUCTION.xml
Added By: Feedage Forager Feedage Grade C rated
Language: English
Tags:
arabidopsis pollen  arabidopsis  cell wall  cell  cellulose  model  mutant  phi  pollen tube  pollen  regulating channels  tube  wall 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: PLANT PHYSIOLOGY CELL BIOLOGY AND SIGNAL TRANSDUCTION

PLANT PHYSIOLOGY CELL BIOLOGY AND SIGNAL TRANSDUCTION



PLANT PHYSIOLOGY RSS feed -- recent CELL BIOLOGY AND SIGNAL TRANSDUCTION articles



 



The Cell Wall of the Arabidopsis Pollen Tube--Spatial Distribution, Recycling, and Network Formation of Polysaccharides

2012-12-05T05:22:42-08:00

The pollen tube is a cellular protuberance formed by the pollen grain, or male gametophyte, in flowering plants. Its principal metabolic activity is the synthesis and assembly of cell wall material, which must be precisely coordinated to sustain the characteristic rapid growth rate and to ensure geometrically correct and efficient cellular morphogenesis. Unlike other model species, the cell wall of the Arabidopsis (Arabidopsis thaliana) pollen tube has not been described in detail. We used immunohistochemistry and quantitative image analysis to provide a detailed profile of the spatial distribution of the major cell wall polymers composing the Arabidopsis pollen tube cell wall. Comparison with predictions made by a mechanical model for pollen tube growth revealed the importance of pectin deesterification in determining the cell diameter. Scanning electron microscopy demonstrated that cellulose microfibrils are oriented in near longitudinal orientation in the Arabidopsis pollen tube cell wall, consistent with a linear arrangement of cellulose synthase CESA6 in the plasma membrane. The cellulose label was also found inside cytoplasmic vesicles and might originate from an early activation of cellulose synthases prior to their insertion into the plasma membrane or from recycling of short cellulose polymers by endocytosis. A series of strategic enzymatic treatments also suggests that pectins, cellulose, and callose are highly cross linked to each other.




Systems Dynamic Modeling of a Guard Cell Cl- Channel Mutant Uncovers an Emergent Homeostatic Network Regulating Stomatal Transpiration

2012-12-05T05:22:42-08:00

Stomata account for much of the 70% of global water usage associated with agriculture and have a profound impact on the water and carbon cycles of the world. Stomata have long been modeled mathematically, but until now, no systems analysis of a plant cell has yielded detail sufficient to guide phenotypic and mutational analysis. Here, we demonstrate the predictive power of a systems dynamic model in Arabidopsis (Arabidopsis thaliana) to explain the paradoxical suppression of channels that facilitate K+ uptake, slowing stomatal opening, by mutation of the SLAC1 anion channel, which mediates solute loss for closure. The model showed how anion accumulation in the mutant suppressed the H+ load on the cytosol and promoted Ca2+ influx to elevate cytosolic pH (pHi) and free cytosolic Ca2+ concentration ([Ca2+]i), in turn regulating the K+ channels. We have confirmed these predictions, measuring pHi and [Ca2+]i in vivo, and report that experimental manipulation of pHi and [Ca2+]i is sufficient to recover K+ channel activities and accelerate stomatal opening in the slac1 mutant. Thus, we uncover a previously unrecognized signaling network that ameliorates the effects of the slac1 mutant on transpiration by regulating the K+ channels. Additionally, these findings underscore the importance of H+-coupled anion transport for pHi homeostasis.