Subscribe: Journal of Biological Chemistry recent issues
http://www.jbc.org/rss/recent.xml
Added By: Feedage Forager Feedage Grade B rated
Language: English
Tags:
activity  binding  cell  cells  complex  human  induced  protein  proteins  receptor  results  role  signaling  structure 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: Journal of Biological Chemistry recent issues

Journal of Biological Chemistry recent issues



Journal of Biological Chemistry RSS feed -- recent issues



 



NMR-directed design of pre-TCR{beta} and pMHC molecules implies a distinct geometry for pre-TCR relative to {alpha}{beta}TCR recognition of pMHC [Protein Structure and Folding]

2018-01-19T00:06:06-08:00

The pre-T cell receptor (pre-TCR) guides early thymocytes through maturation processes within the thymus via interaction with self-ligands displayed on thymic epithelial cells. The pre-TCR is a disulfide-linked heterodimer composed of an invariant pre-TCR α (pTα) subunit and a variable β subunit, the latter of which is incorporated into the mature TCR in subsequent developmental progression. This interaction of pre-TCR with peptide-major histocompatibility complex (pMHC) molecules has recently been shown to drive robust pre-TCR signaling and thymocyte maturation. Although the native sequences of β are properly folded and suitable for NMR studies in isolation, a tendency to self-associate rendered binding studies with physiological ligands difficult to interpret. Consequently, to structurally define this critical interaction, we have re-engineered the extracellular regions of β, designated as β-c1, for prokaryotic production to be used in NMR spectroscopy. Given the large size of the full extracellular domain of class I MHC molecules such as H-Kb, we produced a truncated form termed Kb-t harboring properties favorable for NMR measurements. This system has enabled robust measurement of a pre-TCR–pMHC interaction directly analogous to that of TCRαβ–pMHC. Binding surface analysis identified a contact surface comparable in size to that of the TCRαβ–pMHC but potentially with a rather distinct binding orientation. A tilting of the pre-TCRβ when bound to the pMHC ligand recognition surface versus the upright orientation of TCRαβ would alter the direction of force application between pre-TCR and TCR mechanosensors, impacting signal initiation.



Structural features of {alpha}-synuclein amyloid fibrils revealed by Raman spectroscopy [Molecular Biophysics]

2018-01-19T00:06:06-08:00

Parkinson's disease (PD) is associated with the formation of α-synuclein amyloid fibrils. Elucidating the role of these β-sheet-rich fibrils in disease progression is crucial; however, collecting detailed structural information on amyloids is inherently difficult because of their insoluble, non-crystalline, and polymorphic nature. Here, we show that Raman spectroscopy is a facile technique for characterizing structural features of α-synuclein fibrils. Combining Raman spectroscopy with aggregation kinetics and transmission electron microscopy, we examined the effects of pH and ionic strength as well as four PD–related mutations (A30P, E46K, G51D, and A53T) on α-synuclein fibrils. Raman spectral differences were observed in the amide-I, amide-III, and fingerprint regions, indicating that secondary structure and tertiary contacts are influenced by pH and to a lesser extent by NaCl. Faster aggregation times appear to facilitate unique fibril structure as determined by the highly reproducible amide-I band widths, linking aggregation propensity and fibril polymorphism. Importantly, Raman spectroscopy revealed molecular-level perturbations of fibril conformation by the PD–related mutations that are not apparent through transmission electron microscopy or limited proteolysis. The amide-III band was found to be particularly sensitive, with G51D exhibiting the most distinctive features, followed by A53T and E46K. Relating to a cellular environment, our data would suggest that fibril polymorphs can be formed in different cellular compartments and potentially result in distinct phenotypes. Our work sets a foundation toward future cellular Raman studies of amyloids.



Translation efficiency is maintained at elevated temperature in Escherichia coli [Protein Synthesis and Degradation]

2018-01-19T00:06:06-08:00

Cellular protein levels are dictated by the balance between gene transcription, mRNA translation, and protein degradation, among other factors. Translation requires the interplay of several RNA hybridization processes, which are expected to be temperature-sensitive. We used ribosome profiling to monitor translation in Escherichia coli at 30 °C and to investigate how this changes after 10–20 min of heat shock at 42 °C. Translation efficiencies are robustly maintained after thermal heat shock and after mimicking the heat-shock response transcriptional program at 30 °C by overexpressing the heat shock σ factor encoded by the rpoH gene. We compared translation efficiency, the ratio of ribosome footprint reads to mRNA reads for each gene, to parameters derived from gene sequences. Genes with stable mRNA structures, non-optimal codon use, and those whose gene product is cotranslationally translocated into the inner membrane are generally less highly translated than other genes. Comparison with other published datasets suggests a role for translational elongation in coupling mRNA structures to translation initiation. Genome-wide calculations of the temperature dependence of mRNA structure predict that relatively few mRNAs show a melting transition between 30 and 42 °C, consistent with the observed lack of changes in translation efficiency. We developed a linear model with six parameters that can predict 38% of the variation in translation efficiency between genes, which may be useful in interpreting transcriptome data.



Toll-like receptor 4-induced ryanodine receptor 2 oxidation and sarcoplasmic reticulum Ca2+ leakage promote cardiac contractile dysfunction in sepsis [Cell Biology]

2018-01-19T00:06:06-08:00

Studies suggest the potential role of a sarcoplasmic reticulum (SR) Ca2+ leak in cardiac contractile dysfunction in sepsis. However, direct supporting evidence is lacking, and the mechanisms underlying this SR leak are poorly understood. Here, we investigated the changes in cardiac Ca2+ handling and contraction in LPS-treated rat cardiomyocytes and a mouse model of polymicrobial sepsis produced by cecal ligation and puncture (CLP). LPS decreased the systolic Ca2+ transient and myocyte contraction as well as SR Ca2+ content. Meanwhile, LPS increased Ca2+ spark–mediated SR Ca2+ leak. Preventing the SR leak with ryanodine receptor (RyR) blocker tetracaine restored SR load and increased myocyte contraction. Similar alterations in Ca2+ handling were observed in cardiomyocytes from CLP mice. Treatment with JTV-519, an anti-SR leak drug, restored Ca2+ handling and improved cardiac function. In the LPS-treated cardiomyocytes, mitochondrial reactive oxygen species and oxidative stress in RyR2 were increased, whereas the levels of the RyR2-associated FK506-binding protein 1B (FKBP12.6) were decreased. The Toll-like receptor 4 (TLR4)–specific inhibitor TAK-242 reduced the oxidative stress in LPS-treated cells, decreased the SR leak, and normalized Ca2+ handling and myocyte contraction. Consistently, TLR4 deletion significantly improved cardiac function and corrected abnormal Ca2+ handling in the CLP mice. This study provides evidence for the critical role of the SR Ca2+ leak in the development of septic cardiomyopathy and highlights the therapeutic potential of JTV-519 by preventing SR leak. Furthermore, it reveals that TLR4 activation-induced mitochondrial reactive oxygen species production and the resulting oxidative stress in RyR2 contribute to the SR Ca2+ leak.



Biogenesis of the bacterial cbb3 cytochrome c oxidase: Active subcomplexes support a sequential assembly model [Membrane Biology]

2018-01-19T00:06:06-08:00

The cbb3 oxidase has a high affinity for oxygen and is required for growth of bacteria, including pathogens, in oxygen-limited environments. However, the assembly of this oxidase is poorly understood. Most cbb3 are composed of four subunits: the catalytic CcoN subunit, the two cytochrome c subunits (CcoO and CcoP) involved in electron transfer, and the small CcoQ subunit with an unclear function. Here, we address the role of these four subunits in cbb3 biogenesis in the purple bacterium Rubrivivax gelatinosus. Analyses of membrane proteins from different mutants revealed the presence of active CcoNQO and CcoNO subcomplexes and also showed that the CcoP subunit is not essential for their assembly. However, CcoP was required for the oxygen reduction activity in the absence of CcoQ. We also found that CcoQ is dispensable for forming an active CcoNOP subcomplex in membranes. CcoNOP exhibited oxygen reductase activity, indicating that the cofactors (hemes b and copper for CcoN and cytochromes c for CcoO and CcoP) were present within the subunits. Finally, we discovered the presence of a CcoNQ subcomplex and showed that CcoN is the required anchor for the assembly of the full CcoNQOP complex. On the basis of these findings, we propose a sequential assembly model in which the CcoQ subunit is required for the early maturation step: CcoQ first associates with CcoN before the CcoNQ–CcoO interaction. CcoP associates to CcoNQO subcomplex in the late maturation step, and once the CcoNQOP complex is fully formed, CcoQ is released for degradation by the FtsH protease. This model could be conserved in other bacteria, including the pathogenic bacteria lacking the assembly factor CcoH as in R. gelatinosus.



The shaker-1 mouse myosin VIIa deafness mutation results in a severely reduced rate of the ATP hydrolysis step [Enzymology]

2018-01-19T00:06:06-08:00

Mutations in the MYO7A gene, encoding the motor protein myosin VIIa, can cause Usher 1B, a deafness/blindness syndrome in humans, and the shaker-1 phenotype, characterized by deafness, head tossing, and circling behavior, in mice. Myosin VIIa is responsible for tension bearing and the transduction mechanism in the stereocilia and for melanosome transport in the retina, in line with the phenotypic outcomes observed in mice. However, the effect of the shaker-1 mutation, a R502P amino acid substitution, on the motor function is unclear. To explore this question, we determined the kinetic properties and the effect on the filopodial tip localization of the recombinant mouse myosin VIIa-5IQ-SAH R502P (myoVIIa-sh1) construct. Interestingly, although residue 502 is localized to a region thought to be involved in interacting with actin, the kinetic parameters for actin binding changed only slightly for the mutant construct. However, the rate constant for ATP hydrolysis (k+H + k−H) was reduced by ∼200-fold from 12 s−1 to 0.05 s−1, making the hydrolysis step the rate-limiting step of the ATPase cycle in the presence and absence of actin. Given that wild-type mouse myosin VIIa is a slow, high-duty ratio, monomeric motor, this altered hydrolysis rate would reduce activity to extremely low levels. Indeed, the translocation to the filopodial tips was hampered by the diminished motor function of a dimeric construct of the shaker-1 mutant. We conclude that the diminished motor activity of this mutant is most likely responsible for impaired hearing in the shaker-1 mice.



Epitope-focused immunogens against the CD4-binding site of HIV-1 envelope protein induce neutralizing antibodies against auto- and heterologous viruses [Immunology]

2018-01-19T00:06:06-08:00

Recent discoveries of broadly neutralizing antibodies (bnAbs) in HIV-1–infected individuals have led to the identification of several major “vulnerable sites” on the HIV-1 envelope (Env) glycoprotein. These sites have provided precise targets for HIV-1 vaccine development, but identifying and utilizing many of these targets remain technically challenging. Using a yeast surface display–based approach, we sought to identify epitope-focused antigenic domains (EADs) containing one of the “vulnerable sites,” the CD4-binding site (CD4bs), through screening and selection of a combinatorial antigen library of the HIV-1 envelope glycoprotein with the CD4bs bnAb VRC01. We isolated multiple EADs and found that their trimeric forms have biochemical and structural features that preferentially bind and activate B cells that express VRC01 in vitro. More importantly, these EADs could induce detectable levels of neutralizing antibodies against genetically related autologous and heterologous subtype B viruses in guinea pigs. Our results demonstrate that an epitope-focused approach involving a screen of a combinatorial antigen library is feasible. The EADs identified here represent a promising collection of possible targets in the rational design of HIV-1 vaccines and lay the foundation for harnessing the specific antigenicity of CD4bs for protective immunogenicity in vivo.



Phosphorylation of human enhancer filamentation 1 (HEF1) stimulates interaction with Polo-like kinase 1 leading to HEF1 localization to focal adhesions [Molecular Bases of Disease]

2018-01-19T00:06:06-08:00

Elevated expression of human enhancer filamentation 1 (HEF1; also known as NEDD9 or Cas-L) is an essential stimulus for the metastatic process of various solid tumors. This process requires HEF1 localization to focal adhesions (FAs). Although the association of HEF1 with FAs is considered to play a role in cancer cell migration, the mechanism targeting HEF1 to FAs remains unclear. Moreover, up-regulation of Polo-like kinase 1 (Plk1) positively correlates with human cancer metastasis, yet how Plk1 deregulation promotes metastasis remains elusive. Here, we report that casein kinase 1δ (CK1δ) phosphorylates HEF1 at Ser-780 and Thr-804 and that these phosphorylation events promote a physical interaction between Plk1 and HEF1. We found that this interaction is critical for HEF1 translocation to FAs and for inducing migration of HeLa cells. Plk1-docking phosphoepitopes were mapped/confirmed in HEF1 by various methods, including X-ray crystallography, and mutated for functional analysis in HeLa cells. In summary, our results reveal the role of a phosphorylation-dependent HEF1–Plk1 complex in HEF1 translocation to FAs to induce cell migration. Our findings provide critical mechanistic insights into the HEF1–Plk1 complex–dependent localization of HEF1 to FAs underlying the metastatic process and may therefore contribute to the development of new cancer therapies.



Three mammalian tropomyosin isoforms have different regulatory effects on nonmuscle myosin-2B and filamentous {beta}-actin in vitro [Molecular Biophysics]

2018-01-19T00:06:06-08:00

The metazoan actin cytoskeleton supports a wide range of contractile and transport processes. Recent studies have shown how the dynamic association with specific tropomyosin isoforms generates actin filament populations with distinct functional properties. However, critical details of the associated molecular interactions remain unclear. Here, we report the properties of actomyosin–tropomyosin complexes containing filamentous β-actin, nonmuscle myosin-2B (NM-2B) constructs, and either tropomyosin isoform Tpm1.8cy (b.–.b.d), Tpm1.12br (b.–.b.c), or Tpm3.1cy (b.–.a.d). Our results show the extent to which the association of filamentous β-actin with these different tropomyosin cofilaments affects the actin-mediated activation of NM-2B and the release of the ATP hydrolysis products ADP and phosphate from the active site. Phosphate release gates a transition from weak to strong F-actin–binding states. The release of ADP has the opposite effect. These changes in dominant rate-limiting steps have a direct effect on the duty ratio, the fraction of time that NM-2B spends in strongly F-actin–bound states during ATP turnover. The duty ratio is increased ∼3-fold in the presence of Tpm1.12 and 5-fold for both Tpm1.8 and Tpm3.1. The presence of Tpm1.12 extends the time required per ATP hydrolysis cycle 3.7-fold, whereas it is shortened by 27 and 63% in the presence of Tpm1.8 and Tpm3.1, respectively. The resulting Tpm isoform–specific changes in the frequency, duration, and efficiency of actomyosin interactions establish a molecular basis for the ability of these complexes to support cellular processes with widely divergent demands in regard to force production, capacity to move processively, and speed of movement.



Heterologous phosphorylation-induced formation of a stability lock permits regulation of inactive receptors by {beta}-arrestins [Signal Transduction]

2018-01-19T00:06:06-08:00

β-Arrestins are key regulators and signal transducers of G protein–coupled receptors (GPCRs). The interaction between receptors and β-arrestins is generally believed to require both receptor activity and phosphorylation by GPCR kinases. In this study, we investigated whether β-arrestins are able to bind second messenger kinase–phosphorylated, but inactive receptors as well. Because heterologous phosphorylation is a common phenomenon among GPCRs, this mode of β-arrestin activation may represent a novel mechanism of signal transduction and receptor cross-talk. Here we demonstrate that activation of protein kinase C (PKC) by phorbol myristate acetate, Gq/11-coupled GPCR, or epidermal growth factor receptor stimulation promotes β-arrestin2 recruitment to unliganded AT1 angiotensin receptor (AT1R). We found that this interaction depends on the stability lock, a structure responsible for the sustained binding between GPCRs and β-arrestins, formed by phosphorylated serine–threonine clusters in the receptor's C terminus and two conserved phosphate-binding lysines in the β-arrestin2 N-domain. Using improved FlAsH-based serine-threonine clusters β-arrestin2 conformational biosensors, we also show that the stability lock not only stabilizes the receptor–β-arrestin interaction, but also governs the structural rearrangements within β-arrestins. Furthermore, we found that β-arrestin2 binds to PKC-phosphorylated AT1R in a distinct active conformation, which triggers MAPK recruitment and receptor internalization. Our results provide new insights into the activation of β-arrestins and reveal their novel role in receptor cross-talk.



Ligand-specific conformational transitions and intracellular transport are required for atypical chemokine receptor 3-mediated chemokine scavenging [Signal Transduction]

2018-01-19T00:06:06-08:00

The atypical chemokine receptor ACKR3 contributes to chemotaxis by binding, internalizing, and degrading the chemokines CXCL11 and CXCL12 to shape and terminate chemotactic gradients during development and immune responses. Although unable to trigger G protein activation, both ligands activate G protein–independent ACKR3 responses and prompt arrestin recruitment. This offers a model to specifically study ligand-specific receptor conformations leading to G protein–independent signaling and to functional parameters such as receptor transport and chemokine degradation. We here show chemokine specificity in arrestin recruitment, by different effects of single amino acid substitutions in ACKR3 on arrestin in response to CXCL12 or CXCL11. Chemokine specificity in receptor transport was also observed, as CXCL11 induced faster receptor internalization, slower recycling, and longer intracellular sojourn of ACKR3 than CXCL12. Internalization and recycling rates of the ACKR3 R1423.50A substitution in response to each chemokine were similar; however, ACKR3 R1423.50A degraded only CXCL12 and not CXCL11. This suggests that ligand-specific intracellular receptor transport is required for chemokine degradation. Remarkably, the failure of ACKR3 R1423.50A to degrade CXCL11 was not caused by the lack of arrestin recruitment; rather, arrestin was entirely dispensable for scavenging of either chemokine. This suggests the involvement of another, yet unidentified, ACKR3 effector in scavenging. In summary, our study correlates ACKR3 ligand-specific conformational transitions with chemokine-dependent receptor transport dynamics and points toward unexpected ligand specificity in the mechanisms of chemokine degradation.



Molecular characterization of human anti-hinge antibodies derived from single-cell cloning of normal human B cells [Immunology]

2018-01-19T00:06:06-08:00

Anti-hinge antibodies (AHAs) are an autoantibody subclass that, following proteolytic cleavage, recognize cryptic epitopes exposed in the hinge regions of immunoglobulins (Igs) and do not bind to the intact Ig counterpart. AHAs have been postulated to exacerbate chronic inflammatory disorders such as inflammatory bowel disease and rheumatoid arthritis. On the other hand, AHAs may protect against invasive microbial pathogens and cancer. However, despite more than 50 years of study, the origin and specific B cell compartments that express AHAs remain elusive. Recent research on serum AHAs suggests that they arise during an active immune response, in contrast to previous proposals that they derive from the preexisting immune repertoire in the absence of antigenic stimuli. We report here the isolation and characterization of AHAs from memory B cells, although anti-hinge–reactive B cells were also detected in the naive B cell compartment. IgG AHAs cloned from a single human donor exhibited restricted specificity for protease-cleaved F(ab′)2 fragments and did not bind the intact IgG counterpart. The cloned IgG-specific AHA-variable regions were mutated from germ line-derived sequences and displayed a high sequence variability, confirming that these AHAs underwent class-switch recombination and somatic hypermutation. Consistent with previous studies of serum AHAs, several of these clones recognized a linear, peptide-like epitope, but one clone was unique in recognizing a conformational epitope. All cloned AHAs could restore immune effector functions to proteolytically generated F(ab′)2 fragments. Our results confirm that a diverse set of epitope-specific AHAs can be isolated from a single human donor.



Structural characterization of the bacterial proteasome homolog BPH reveals a tetradecameric double-ring complex with unique inner cavity properties [Protein Structure and Folding]

2018-01-19T00:06:06-08:00

Eukaryotic and archaeal proteasomes are paradigms for self-compartmentalizing proteases. To a large extent, their function requires interplay with hexameric ATPases associated with diverse cellular activities (AAA+) that act as substrate unfoldases. Bacteria have various types of self-compartmentalizing proteases; in addition to the proteasome itself, these include the proteasome homolog HslV, which functions together with the AAA+ HslU; the ClpP protease with its partner AAA+ ClpX; and Anbu, a recently characterized ancestral proteasome variant. Previous bioinformatic analysis has revealed a novel bacterial member of the proteasome family Betaproteobacteria proteasome homolog (BPH). Using cluster analysis, we here affirmed that BPH evolutionarily descends from HslV. Crystal structures of the Thiobacillus denitrificans and Cupriavidus metallidurans BPHs disclosed a homo-oligomeric double-ring architecture in which the active sites face the interior of the cylinder. Using small-angle X-ray scattering (SAXS) and electron microscopy averaging, we found that BPH forms tetradecamers in solution, unlike the dodecamers seen in HslV. Although the highly acidic inner surface of BPH was in striking contrast to the cavity characteristics of the proteasome and HslV, a classical proteasomal reaction mechanism could be inferred from the covalent binding of the proteasome-specific inhibitor epoxomicin to BPH. A ligand-bound structure implied that the elongated BPH inner pore loop may be involved in substrate recognition. The apparent lack of a partner unfoldase and other unique features, such as Ser replacing Thr as the catalytic residue in certain BPH subfamilies, suggest a proteolytic function for BPH distinct from those of known bacterial self-compartmentalizing proteases.



A novel chemical inducer of Streptococcus quorum sensing acts by inhibiting the pheromone-degrading endopeptidase PepO [Gene Regulation]

2018-01-19T00:06:06-08:00

Bacteria produce chemical signals (pheromones) to coordinate behaviors across a population in a process termed quorum sensing (QS). QS systems comprising peptide pheromones and their corresponding Rgg receptors are widespread among Firmicutes and may be useful targets for manipulating microbial behaviors, like suppressing virulence. The Rgg2/3 QS circuit of the human pathogen Streptococcus pyogenes controls genes affecting resistance to host lysozyme in response to short hydrophobic pheromones (SHPs). Considering that artificial activation of a QS pathway may be as useful in the objective of manipulating bacteria as inhibiting it, we sought to identify small-molecule inducers of the Rgg2/3 QS system. We report the identification of a small molecule, P516-0475, that specifically induced expression of Rgg2/3-regulated genes in the presence of SHP pheromones at concentrations lower than typically required for QS induction. In searching for the mode of action of P516-0475, we discovered that an S. pyogenes mutant deficient in pepO, a neprilysin-like metalloendopeptidase that degrades SHP pheromones, was unresponsive to the compound. P516-0475 directly inhibited recombinant PepO in vitro as an uncompetitive inhibitor. We conclude that this compound induces QS by stabilizing SHP pheromones in culture. Our study indicates the usefulness of cell-based screens that modulate pathway activities to identify unanticipated therapeutic targets contributing to QS signaling.



A neutralizing antibody that blocks delivery of the enzymatic cargo of Clostridium difficile toxin TcdB into host cells [Microbiology]

2018-01-19T00:06:06-08:00

Clostridium difficile infection is the leading cause of hospital-acquired diarrhea and is mediated by the actions of two toxins, TcdA and TcdB. The toxins perturb host cell function through a multistep process of receptor binding, endocytosis, low pH–induced pore formation, and the translocation and delivery of an N-terminal glucosyltransferase domain that inactivates host GTPases. Infection studies with isogenic strains having defined toxin deletions have established TcdB as an important target for therapeutic development. Monoclonal antibodies that neutralize TcdB function have been shown to protect against C. difficile infection in animal models and reduce recurrence in humans. Here, we report the mechanism of TcdB neutralization by PA41, a humanized monoclonal antibody capable of neutralizing TcdB from a diverse array of C. difficile strains. Through a combination of structural, biochemical, and cell functional studies, involving X-ray crystallography and EM, we show that PA41 recognizes a single, highly conserved epitope on the TcdB glucosyltransferase domain and blocks productive translocation and delivery of the enzymatic cargo into the host cell. Our study reveals a unique mechanism of C. difficile toxin neutralization by a monoclonal antibody, which involves targeting a process that is conserved across the large clostridial glucosylating toxins. The PA41 antibody described here provides a valuable tool for dissecting the mechanism of toxin pore formation and translocation across the endosomal membrane.



Efficient solid-phase synthesis of meningococcal capsular oligosaccharides enables simple and fast chemoenzymatic vaccine production [Microbiology]

2018-01-19T00:06:06-08:00

Neisseria meningitidis serogroups A and X are among the leading causes of bacterial meningitis in the African meningitis belt. Glycoconjugate vaccines, consisting of an antigenic carrier protein coupled to the capsular polysaccharide of the bacterial pathogen, are the most effective strategy for prevention of meningococcal disease. However, the distribution of effective glycoconjugate vaccines in this region is limited by the high cost of cultivating pathogens and purification of their capsular polysaccharides. Moreover, chemical approaches to synthesize oligosaccharide antigens have proven challenging. In the current study, we present a chemoenzymatic approach for generating tailored oligosaccharide fractions ready for activation and coupling to the carrier protein. In a first step, the elongation modes of recombinant capsular polymerases from Neisseria meningitidis serogroups A (CsaB) and X (CsxA) were characterized. We observed that CsaB is a distributive enzyme, and CsxA is a processive enzyme. Sequence comparison of these two stealth family proteins revealed a C-terminal extension in CsxA, which conferred processivity because of the existence of a second product-binding site. Deletion of the C-terminal domain converted CsxA into a distributive enzyme, allowing facile control of product length by adjusting the ratio of donor to acceptor sugars. Solid-phase fixation of the engineered capsular polymerases enabled rapid production of capsular polysaccharides with high yield and purity. In summary, the tools developed here provide critical steps toward reducing the cost of conjugate vaccine production, which will increase access in regions with the greatest need. Our work also facilitates efforts to study the relationship between oligosaccharide size and antigenicity.



Blue light-excited LOV1 and LOV2 domains cooperatively regulate the kinase activity of full-length phototropin2 from Arabidopsis [Signal Transduction]

2018-01-19T00:06:06-08:00

Phototropin2 (phot2) is a blue-light (BL) receptor that regulates BL-dependent activities for efficient photosynthesis in plants. phot2 comprises two BL-receiving light-oxygen-voltage–sensing domains (LOV1 and LOV2) and a kinase domain. BL-excited LOV2 is thought to be primarily responsible for the BL-dependent activation of the kinase. However, the molecular mechanisms by which small BL-induced conformational changes in the LOV2 domain are transmitted to the kinase remain unclear. Here, we used full-length wild-type and mutant phot2 proteins from Arabidopsis to study their molecular properties in the dark and under BL irradiation. Phosphorylation assays and absorption measurements indicated that the LOV1 domain assists the thermal relaxation of BL-excited LOV2 and vice versa. Using small-angle X-ray scattering and electron microscopy, we observed that phot2 forms a dimer and has a rod shape with a maximum length of 188 Å and a radius of gyration of 44 Å. Under BL, phot2 displayed large conformational changes that bent the rod shape. By superimposing the crystal structures of the LOV1 dimer, LOV2, and a homology model of the kinase to the observed changes, we inferred that the BL-dependent change consisted of positional shifts of both LOV2 and the kinase relative to LOV1. Furthermore, phot2 mutants lacking the photocycle in LOV1 or LOV2 still exhibited conformational changes under BL, suggesting that LOV1 and LOV2 cooperatively contribute to the conformational changes that activate the kinase. These results suggest that BL-activated LOV1 contributes to the kinase activity of phot2. We discuss the possible intramolecular interactions and signaling mechanisms in phot2.



Caveolin-1 regulates lipid droplet metabolism in endothelial cells via autocrine prostacyclin-stimulated, cAMP-mediated lipolysis [Lipids]

2018-01-19T00:06:06-08:00

Lipid droplets (LD) are dynamic organelles involved in intracellular lipid metabolism in almost all eukaryotic cells, and LD-associated proteins tightly regulate their dynamics. One LD coat protein is caveolin-1 (Cav-1), an essential component for caveola assembly in highly differentiated cells, including adipocytes, smooth muscle cells, and endothelial cells (EC). However, the role of Cav-1 in LD dynamics is unclear. Here we report that EC lacking Cav-1 exhibit impaired LD formation. The decreased LD formation is due to enhanced lipolysis and not caused by reduced triglyceride synthesis or fatty acid uptake. Mechanistically, the absence of Cav-1 increased cAMP/PKA signaling in EC, as indicated by elevated phosphorylation of hormone-sensitive lipase and increased lipolysis. Unexpectedly, we also observed enhanced autocrine production of prostaglandin I2 (PGI2, also called prostacyclin) in Cav-1 KO EC, and this PGI2 increase appeared to stimulate cAMP/PKA pathways, contributing to the enhanced lipolysis in Cav-1 KO cells. Our results reveal an unanticipated role of Cav-1 in regulating lipolysis in non-adipose tissue, indicating that Cav-1 is required for LD metabolism in EC and that it regulates cAMP-dependent lipolysis in part via the autocrine production of PGI2.



ST6Gal-I sialyltransferase promotes chemoresistance in pancreatic ductal adenocarcinoma by abrogating gemcitabine-mediated DNA damage [Cell Biology]

2018-01-19T00:06:06-08:00

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a poor prognosis. Gemcitabine, as a single agent or in combination therapy, remains the frontline chemotherapy despite its limited efficacy due to de novo or acquired chemoresistance. There is an acute need to decipher mechanisms underlying chemoresistance and identify new targets to improve patient outcomes. Here, we report a novel role for the ST6Gal-I sialyltransferase in gemcitabine resistance. Utilizing MiaPaCa-2 and BxPC-3 PDAC cells, we found that knockdown (KD) of ST6Gal-I expression, as well as removal of surface α2–6 sialic acids by neuraminidase, enhances gemcitabine-mediated cell death assessed via clonogenic assays and cleaved caspase 3 expression. Additionally, KD of ST6Gal-I potentiates gemcitabine-induced DNA damage as measured by comet assays and quantification of γH2AX foci. ST6Gal-I KD also alters mRNA expression of key gemcitabine metabolic genes, RRM1, RRM2, hENT1, and DCK, leading to an increased gemcitabine sensitivity ratio, an indicator of gemcitabine toxicity. Gemcitabine-resistant MiaPaCa-2 cells display higher ST6Gal-I levels than treatment-naïve cells along with a reduced gemcitabine sensitivity ratio, suggesting that chronic chemotherapy selects for clonal variants with more abundant ST6Gal-I. Finally, we examined Suit2 PDAC cells and Suit2 derivatives with enhanced metastatic potential. Intriguingly, three metastatic and chemoresistant subclones, S2-CP9, S2-LM7AA, and S2-013, exhibit up-regulated ST6Gal-I relative to parental Suit2 cells. ST6Gal-I KD in S2-013 cells increases gemcitabine-mediated DNA damage, indicating that suppressing ST6Gal-I activity sensitizes inherently resistant cells to gemcitabine. Together, these findings place ST6Gal-I as a critical player in imparting gemcitabine resistance and as a potential target to restore PDAC chemoresponse.



TMEM16A and TMEM16B channel proteins generate Ca2+-activated Cl- current and regulate melatonin secretion in rat pineal glands [Cell Biology]

2018-01-19T00:06:06-08:00

Pinealocytes regulate circadian rhythm by synthesizing and secreting melatonin. These cells generate action potentials; however, the contribution of specific ion channels to melatonin secretion from pinealocytes remains unclear. In this study, the involvement and molecular identity of Ca2+-activated Cl− (ClCa) channels in the regulation of melatonin secretion were examined in rat pineal glands. Treatment with the ClCa channel blockers, niflumic acid or T16Ainh-A01, significantly reduced melatonin secretion in pineal glands. After pineal K+ currents were totally blocked under whole-cell patch clamp conditions, depolarization and subsequent repolarization induced a slowly activating outward current and a substantial inward tail current, respectively. Both of these current changes were dependent on intracellular Ca2+ concentration and inhibited by niflumic acid and T16Ainh-A01. Quantitative real-time PCR, Western blotting, and immunocytochemical analyses revealed that TMEM16A and TMEM16B were highly expressed in pineal glands. siRNA knockdown of TMEM16A and/or TMEM16B showed that both channels contribute to ClCa currents in pinealocytes. Conversely, co-expression of TMEM16A and TMEM16B channels or the expression of this tandem channel in HEK293 cells mimicked the electrophysiological characteristics of ClCa currents in pinealocytes. Moreover, bimolecular fluorescence complementation, FRET, and co-immunoprecipitation experiments suggested that TMEM16A and TMEM16B can form heteromeric channels, as well as homomeric channels. In conclusion, pineal ClCa channels are composed of TMEM16A and TMEM16B subunits, and these fluxes regulate melatonin secretion in pineal glands.



The prototypical proton-coupled oligopeptide transporter YdgR from Escherichia coli facilitates chloramphenicol uptake into bacterial cells [Microbiology]

2018-01-19T00:06:06-08:00

Chloramphenicol (Cam) is a broad-spectrum antibiotic used to combat bacterial infections in humans and animals. Cam export from bacterial cells is one of the mechanisms by which pathogens resist Cam's antibacterial effects, and several different proteins are known to facilitate this process. However, to date no report exists on any specific transport protein that facilitates Cam uptake. The proton-coupled oligopeptide transporter (POT) YdgR from Escherichia coli is a prototypical member of the POT family, functioning in proton-coupled uptake of di- and tripeptides. By following bacterial growth and conducting LC-MS–based assays we show here that YdgR facilitates Cam uptake. Some YdgR variants displaying reduced peptide uptake also exhibited reduced Cam uptake, indicating that peptides and Cam bind YdgR at similar regions. Homology modeling of YdgR, Cam docking, and mutational studies suggested a binding mode that resembles that of Cam binding to the multidrug resistance transporter MdfA. To our knowledge, this is the first report of Cam uptake into bacterial cells mediated by a specific transporter protein. Our findings suggest a specific bacterial transporter for drug uptake that might be targeted to promote greater antibiotic influx to increase cytoplasmic antibiotic concentration for enhanced cytotoxicity.



Cathepsin D regulates cathepsin B activation and disease severity predominantly in inflammatory cells during experimental pancreatitis [Enzymology]

2018-01-19T00:06:06-08:00

Acute pancreatitis is a complex disorder involving both premature intracellular protease activation and inflammatory cell invasion. An initiating event is the intracellular activation of trypsinogen by cathepsin B (CTSB), which can be induced directly via G protein–coupled receptors on acinar cells or through inflammatory cells. Here, we studied CTSB regulation by another lysosomal hydrolase, cathepsin D (CTSD), using mice with a complete (CTSD−/−) or pancreas-specific conditional CTSD knockout (KO) (CTSDf/f/p48Cre/+). We induced acute pancreatitis by repeated caerulein injections and isolated acinar and bone marrow cells for ex vivo studies. Supramaximal caerulein stimulation induced subcellular redistribution of CTSD from the lysosomal to the zymogen-containing subcellular compartment of acinar cells and activation of CTSD, CTSB, and trypsinogen. Of note, the CTSD KO greatly reduced CTSB and trypsinogen activation in acinar cells, and CTSD directly activated CTSB but not trypsinogen in vitro. During pancreatitis in pancreas-specific CTSDf/f/p48Cre/+ animals, markers of severity were reduced only at 1 h, whereas in the complete KO, this effect also included the late disease phase (8 h), indicating an important effect of extra-acinar CTSD on course of the disease. CTSD−/− leukocytes exhibited reduced cytokine release after lipopolysaccharide (LPS) stimulation, and CTSD KO also reduced caspase-3 activation and apoptosis in acinar cells stimulated with the intestinal hormone cholecystokinin. In summary, CTSD is expressed in pancreatic acinar and inflammatory cells, undergoes subcellular redistribution and activation during experimental pancreatitis, and regulates disease severity by potently activating CTSB. Its impact is only minimal and transient in the early, acinar cell–dependent phase of pancreatitis and much greater in the later, inflammatory cell–dependent phase of the disease.



Elevated sodium chloride drives type I interferon signaling in macrophages and increases antiviral resistance [Cell Biology]

2018-01-19T00:06:06-08:00

Type I IFN production and signaling in macrophages play critical roles in innate immune responses. High salt (i.e. high concentrations of NaCl) has been proposed to be an important environmental factor that influences immune responses in multiple ways. However, it remains unknown whether high salt regulates type I IFN production and signaling in macrophages. Here, we demonstrated that high salt promoted IFNβ production and its signaling in both human and mouse macrophages, and consequentially primed macrophages for strengthened immune sensing and signaling when challenged with viruses or viral nucleic acid analogues. Using both pharmacological inhibitors and RNA interference we showed that these effects of high salt on IFNβ signaling were mediated by the p38 MAPK/ATF2/AP1 signaling pathway. Consistently, high salt increased resistance to vesicle stomatitis virus (VSV) infection in vitro. In vivo data indicated that a high-salt diet protected mice from lethal VSV infection. Taken together, these results identify high salt as a crucial regulator of type I IFN production and signaling, shedding important new light on the regulation of innate immune responses.



Molecular mimicking of C-terminal phosphorylation tunes the surface dynamics of CaV1.2 calcium channels in hippocampal neurons [Neurobiology]

2018-01-19T00:06:06-08:00

L-type voltage-gated CaV1.2 calcium channels (CaV1.2) are key regulators of neuronal excitability, synaptic plasticity, and excitation-transcription coupling. Surface-exposed CaV1.2 distributes in clusters along the dendrites of hippocampal neurons. A permanent exchange between stably clustered and laterally diffusive extra-clustered channels maintains steady-state levels of CaV1.2 at dendritic signaling domains. A dynamic equilibrium between anchored and diffusive receptors is a common feature among ion channels and is crucial to modulate signaling transduction. Despite the importance of this fine regulatory system, the molecular mechanisms underlying the surface dynamics of CaV1.2 are completely unexplored. Here, we examined the dynamic states of CaV1.2 depending on phosphorylation on Ser-1700 and Ser-1928 at the channel C terminus. Phosphorylation at these sites is strongly involved in CaV1.2-mediated nuclear factor of activated T cells (NFAT) signaling, long-term potentiation, and responsiveness to adrenergic stimulation. We engineered CaV1.2 constructs mimicking phosphorylation at Ser-1700 and Ser-1928 and analyzed their behavior at the membrane by immunolabeling protocols, fluorescence recovery after photobleaching, and single particle tracking. We found that the phosphomimetic S1928E variant increases the mobility of CaV1.2 without altering the steady-state maintenance of cluster in young neurons and favors channel stabilization later in differentiation. Instead, mimicking phosphorylation at Ser-1700 promoted the diffusive state of CaV1.2 irrespective of the differentiation stage. Together, these results reveal that phosphorylation could contribute to the establishment of channel anchoring mechanisms depending on the neuronal differentiation state. Finally, our findings suggest a novel mechanism by which phosphorylation at the C terminus regulates calcium signaling by tuning the content of CaV1.2 at signaling complexes.



Cohesin SA2 is a sequence-independent DNA-binding protein that recognizes DNA replication and repair intermediates [DNA and Chromosomes]

2018-01-19T00:06:06-08:00

Proper chromosome alignment and segregation during mitosis depend on cohesion between sister chromatids, mediated by the cohesin protein complex, which also plays crucial roles in diverse genome maintenance pathways. Current models attribute DNA binding by cohesin to entrapment of dsDNA by the cohesin ring subunits (SMC1, SMC3, and RAD21 in humans). However, the biophysical properties and activities of the fourth core cohesin subunit SA2 (STAG2) are largely unknown. Here, using single-molecule atomic force and fluorescence microscopy imaging as well as fluorescence anisotropy measurements, we established that SA2 binds to both dsDNA and ssDNA, albeit with a higher binding affinity for ssDNA. We observed that SA2 can switch between the 1D diffusing (search) mode on dsDNA and stable binding (recognition) mode at ssDNA gaps. Although SA2 does not specifically bind to centromeric or telomeric sequences, it does recognize DNA structures often associated with DNA replication and double-strand break repair, such as a double-stranded end, single-stranded overhang, flap, fork, and ssDNA gap. SA2 loss leads to a defect in homologous recombination–mediated DNA double-strand break repair. These results suggest that SA2 functions at intermediate DNA structures during DNA transactions in genome maintenance pathways. These findings have important implications for understanding the function of cohesin in these pathways.



Oligomannosidic glycans at Asn-110 are essential for secretion of human diamine oxidase [Protein Structure and Folding]

2018-01-19T00:06:06-08:00

N-Glycosylation plays a fundamental role in many biological processes. Human diamine oxidase (hDAO), required for histamine catabolism, has multiple N-glycosylation sites, but their roles, for example in DAO secretion, are unclear. We recently reported that the N-glycosylation sites Asn-168, Asn-538, and Asn-745 in recombinant hDAO (rhDAO) carry complex-type glycans, whereas Asn-110 carries only mammalian-atypical oligomannosidic glycans. Here, we show that Asn-110 in native hDAO from amniotic fluid and Caco-2 cells, DAO from porcine kidneys, and rhDAO produced in two different HEK293 cell lines is also consistently occupied by oligomannosidic glycans. Glycans at Asn-168 were predominantly sialylated with bi- to tetra-antennary branches, and Asn-538 and Asn-745 had similar complex-type glycans with some tissue- and cell line–specific variations. The related copper-containing amine oxidase human vascular adhesion protein-1 also exclusively displayed high-mannose glycosylation at Asn-137. X-ray structures revealed that the residues adjacent to Asn-110 and Asn-137 form a highly conserved hydrophobic cleft interacting with the core trisaccharide. Asn-110 replacement with Gln completely abrogated rhDAO secretion and caused retention in the endoplasmic reticulum. Mutations of Asn-168, Asn-538, and Asn-745 reduced rhDAO secretion by 13, 71, and 32%, respectively. Asn-538/745 double and Asn-168/538/745 triple substitutions reduced rhDAO secretion by 85 and 94%. Because of their locations in the DAO structure, Asn-538 and Asn-745 glycosylations might be important for efficient DAO dimer formation. These functional results are reflected in the high evolutionary conservation of all four glycosylation sites. Human DAO is abundant only in the gastrointestinal tract, kidney, and placenta, and glycosylation seems essential for reaching high enzyme expression levels in these tissues.



The dUTPase of white spot syndrome virus assembles its active sites in a noncanonical manner [Enzymology]

2018-01-19T00:06:06-08:00

dUTPases are essential enzymes for maintaining genome integrity and have recently been shown to play moonlighting roles when containing extra sequences. Interestingly, the trimeric dUTPase of white spot syndrome virus (wDUT) harbors a sequence insert at the position preceding the C-terminal catalytic motif V (pre-V insert), rarely seen in other dUTPases. However, whether this extra sequence endows wDUT with additional properties is unknown. Herein, we present the crystal structures of wDUT in both ligand-free and ligand-bound forms. We observed that the pre-V insert in wDUT forms an unusual β-hairpin structure in the domain-swapping region and thereby facilitates a unique orientation of the adjacent C-terminal segment, positioning the catalytic motif V onto the active site of its own subunit instead of a third subunit. Consequently, wDUT employs two-subunit active sites, unlike the widely accepted paradigm that the active site of trimeric dUTPase is contributed by all three subunits. According to results from local structural comparisons, the active-site configuration of wDUT is similar to that of known dUTPases. However, we also found that residues in the second-shell region of the active site are reconfigured in wDUT as an adaption to its unique C-terminal orientation. We also show that deletion of the pre-V insert significantly reduces wDUT's enzymatic activity and thermal stability. We hypothesize that this rare structural arrangement confers additional functionality to wDUT. In conclusion, our study expands the structural diversity in the conserved dUTPase family and illustrates how sequence insertion and amino acid substitution drive protein evolution cooperatively.



Phosphorylation of the E3 ubiquitin protein ligase ITCH diminishes binding to its cognate E2 ubiquitin ligase [Immunology]

2018-01-19T00:06:06-08:00

Heightened and extended inflammation underlies the pathogenesis of many disorders, including inflammatory bowel disease, sepsis, and inflammatory arthritis. Ubiquitin networks help dictate the strength and duration of inflammatory signaling. In innate immunity, the itchy E3 ubiquitin protein ligase (ITCH)-A20 ubiquitin–editing complex inhibits receptor-interacting Ser/Thr kinase (RIPK) activation by removing Lys-63–linked polyubiquitinated chains from key proteins in the nuclear factor kappa B (NF-κB) signaling pathway. The complex then attaches polyubiquitinated chains to these proteins to target them for lysosomal or proteasomal destruction. ITCH is phosphorylated and thereby inhibited by inhibitor of nuclear factor kappa B kinase subunit beta (IKKβ) to fine-tune the inflammatory response to the strength of the offending signal. However, the biochemical mechanism by which E3 ubiquitination is impaired by IKK-driven phosphorylation remains unclear. Here, we report that this phosphorylation impedes ITCH binding to its cognate E2 ubiquitin ligase, UbcH7. Using CRISPR-Cas9 genetic knockout to mimic the ITCH-UbcH7–inhibited state, we further show that genetic UbcH7 deficiency phenocopies ITCH phosphorylation in regulating RIPK2 ubiquitination. We conclude that phosphorylation can disrupt the binding of an E3 ubiquitin ligase to an E2-conjugating enzyme, leading to prolonged inflammatory signaling. To our knowledge, this is the first report of E3 ubiquitin ligase phosphorylation inhibiting E3 ligase activity by impairing E2–E3 complex formation.



Quantitative ligand and receptor binding studies reveal the mechanism of interleukin-36 (IL-36) pathway activation [Signal Transduction]

2018-01-12T00:06:08-08:00

IL-36 cytokines signal through the IL-36 receptor (IL-36R) and a shared subunit, IL-1RAcP (IL-1 receptor accessory protein). The activation mechanism for the IL-36 pathway is proposed to be similar to that of IL-1 in that an IL-36R agonist (IL-36α, IL-36β, or IL-36γ) forms a binary complex with IL-36R, which then recruits IL-1RAcP. Recent studies have shown that IL-36R interacts with IL-1RAcP even in the absence of an agonist. To elucidate the IL-36 activation mechanism, we considered all possible binding events for IL-36 ligands/receptors and examined these events in direct binding assays. Our results indicated that the agonists bind the IL-36R extracellular domain with micromolar affinity but do not detectably bind IL-1RAcP. Using surface plasmon resonance (SPR), we found that IL-1RAcP also does not bind IL-36R when no agonist is present. In the presence of IL-36α, however, IL-1RAcP bound IL-36R strongly. These results suggested that the main pathway to the IL-36R·IL-36α·IL-1RAcP ternary complex is through the IL-36R·IL-36α binary complex, which recruits IL-1RAcP. We could not measure the binding affinity of IL-36R to IL-1RAcP directly, so we engineered a fragment crystallizable–linked construct to induce IL-36R·IL-1RAcP heterodimerization and predicted the binding affinity during a complete thermodynamic cycle to be 74 μm. The SPR analysis also indicated that the IL-36R antagonist IL-36Ra binds IL-36R with higher affinity and a much slower off rate than the IL-36R agonists, shedding light on IL-36 pathway inhibition. Our results reveal the landscape of IL-36 ligand and receptor interactions, improving our understanding of IL-36 pathway activation and inhibition.



Azole resistance in a Candida albicans mutant lacking the ABC transporter CDR6/ROA1 depends on TOR signaling [Cell Biology]

2018-01-12T00:06:08-08:00

ATP-binding cassette (ABC) transporters help export various substrates across the cell membrane and significantly contribute to drug resistance. However, a recent study reported an unusual case in which the loss of an ABC transporter in Candida albicans, orf19.4531 (previously named ROA1), increases resistance against antifungal azoles, which was attributed to an altered membrane potential in the mutant strain. To obtain further mechanistic insights into this phenomenon, here we confirmed that the plasma membrane–localized transporter (renamed CDR6/ROA1 for consistency with C. albicans nomenclature) could efflux xenobiotics such as berberine, rhodamine 123, and paraquat. Moreover, a CDR6/ROA1 null mutant, NKKY101, displayed increased susceptibility to these xenobiotics. Interestingly, fluorescence recovery after photobleaching (FRAP) results indicated that NKKY101 mutant cells exhibited increased plasma membrane rigidity, resulting in reduced azole accumulation and contributing to azole resistance. Transcriptional profiling revealed that ribosome biogenesis genes were significantly up-regulated in the NKKY101 mutant. As ribosome biogenesis is a well-known downstream phenomenon of target of rapamycin (TOR1) signaling, we suspected a link between ribosome biogenesis and TOR1 signaling in NKKY101. Therefore, we grew NKKY101 cells on rapamycin and observed TOR1 hyperactivation, which leads to Hsp90-dependent calcineurin stabilization and thereby increased azole resistance. This in vitro finding was supported by in vivo data from a mouse model of systemic infection in which NKKY101 cells led to higher fungal load after fluconazole challenge than wild-type cells. Taken together, our study uncovers a mechanism of azole resistance in C. albicans, involving increased membrane rigidity and TOR signaling.



Structure-guided engineering of the substrate specificity of a fungal {beta}-glucuronidase toward triterpenoid saponins [Protein Structure and Folding]

2018-01-12T00:06:08-08:00

Glycoside hydrolases (GHs) have attracted special attention in research aimed at modifying natural products by partial removal of sugar moieties to manipulate their solubility and efficacy. However, these modifications are challenging to control because the low substrate specificity of most GHs often generates undesired by-products. We previously identified a GH2-type fungal β-glucuronidase from Aspergillus oryzae (PGUS) exhibiting promiscuous substrate specificity in hydrolysis of triterpenoid saponins. Here, we present the PGUS structure, representing the first structure of a fungal β-glucuronidase, and that of an inactive PGUS mutant in complex with the native substrate glycyrrhetic acid 3-O-mono-β-glucuronide (GAMG). PGUS displayed a homotetramer structure with each monomer comprising three distinct domains: a sugar-binding, an immunoglobulin-like β-sandwich, and a TIM barrel domain. Two catalytic residues, Glu414 and Glu505, acted as acid/base and nucleophile, respectively. Structural and mutational analyses indicated that the GAMG glycan moiety is recognized by polar interactions with nine residues (Asp162, His332, Asp414, Tyr469, Tyr473, Asp505, Arg563, Asn567, and Lys569) and that the aglycone moiety is recognized by aromatic stacking and by a π interaction with the four aromatic residues Tyr469, Phe470, Trp472, and Tyr473. Finally, structure-guided mutagenesis to precisely manipulate PGUS substrate specificity in the biotransformation of glycyrrhizin into GAMG revealed that two amino acids, Ala365 and Arg563, are critical for substrate specificity. Moreover, we obtained several mutants with dramatically improved GAMG yield (>95%). Structural analysis suggested that modulating the interaction of β-glucuronidase simultaneously toward glycan and aglycone moieties is critical for tuning its substrate specificity toward triterpenoid saponins.



Chondroitin sulfate-mediated N-cadherin/{beta}-catenin signaling is associated with basal-like breast cancer cell invasion [Cell Biology]

2018-01-12T00:06:08-08:00

Tumor metastasis involves cancer cell invasion across basement membranes and interstitial tissues. The initial invasion step consists of adherence of the tumor cell to the extracellular matrix (ECM), and this binding transduces a variety of signals from the ECM to the tumor cell. Accordingly, it is critical to establish the mechanisms by which extracellular cues influence the intracellular activities that regulate tumor cell invasion. Here, we found that invasion of the basal-like breast cancer cell line BT-549 is enhanced by the ECM component chondroitin sulfates (CSs). CSs interacted with and induced proteolytic cleavage of N-cadherin in the BT-549 cells, yielding a C-terminal intracellular N-cadherin fragment that formed a complex with β-catenin. Of note, the cleavage of N-cadherin increased cytoplasmic and nuclear β-catenin levels; induced the matrix metalloproteinase 9 (MMP9) gene, a target of β-catenin nuclear signaling; and augmented the invasion potential of the cells. We also found that CS-induced N-cadherin proteolysis requires caveolae-mediated endocytosis. An inhibitor of that process, nystatin, blocked both the endocytosis and proteolytic cleavage of N-cadherin induced by CS and also suppressed BT-549 cell invasion. Knock-out of chondroitin 4-O-sulfotransferase-1 (C4ST-1), a key CS biosynthetic enzyme, suppressed activation of the N-cadherin/β-catenin pathway through N-cadherin endocytosis and significantly decreased BT-549 cell invasion. These results suggest that CSs produced by C4ST-1 might be useful therapeutic targets in the management of basal-like breast cancers.



Docosahexaenoic acid lowers cardiac mitochondrial enzyme activity by replacing linoleic acid in the phospholipidome [Membrane Biology]

2018-01-12T00:06:08-08:00

Cardiac mitochondrial phospholipid acyl chains regulate respiratory enzymatic activity. In several diseases, the rodent cardiac phospholipidome is extensively rearranged; however, whether specific acyl chains impair respiratory enzyme function is unknown. One unique remodeling event in the myocardium of obese and diabetic rodents is an increase in docosahexaenoic acid (DHA) levels. Here, we first confirmed that cardiac DHA levels are elevated in diabetic humans relative to controls. We then used dietary supplementation of a Western diet with DHA as a tool to promote cardiac acyl chain remodeling and to study its influence on respiratory enzyme function. DHA extensively remodeled the acyl chains of cardiolipin (CL), monolyso-CL, phosphatidylcholine, and phosphatidylethanolamine. Moreover, DHA lowered enzyme activities of respiratory complexes I, IV, V, and I + III. Mechanistically, the reduction in enzymatic activities was not driven by a dramatic reduction in the abundance of supercomplexes. Instead, replacement of tetralinoleoyl-CL with tetradocosahexaenoyl-CL in biomimetic membranes prevented formation of phospholipid domains that regulate enzyme activity. Tetradocosahexaenoyl-CL inhibited domain organization due to favorable Gibbs free energy of phospholipid mixing. Furthermore, in vitro substitution of tetralinoleoyl-CL with tetradocosahexaenoyl-CL blocked complex IV binding. Finally, reintroduction of linoleic acid, via fusion of phospholipid vesicles to mitochondria isolated from DHA-fed mice, rescued the major losses in the mitochondrial phospholipidome and complexes I, IV, and V activities. Altogether, our results show that replacing linoleic acid with DHA lowers select cardiac enzyme activities by potentially targeting domain organization and phospholipid–protein binding, which has implications for the ongoing debate about polyunsaturated fatty acids and cardiac health.



Direct interactions of mitotic arrest deficient 1 (MAD1) domains with each other and MAD2 conformers are required for mitotic checkpoint signaling [Signal Transduction]

2018-01-12T00:06:08-08:00

As a sensitive signaling system, the mitotic checkpoint ensures faithful chromosome segregation by delaying anaphase onset even when a single kinetochore is unattached to mitotic spindle microtubules. The key signal amplification reaction for the checkpoint is the conformational conversion of “open” mitotic arrest deficient 2 (O-MAD2) into “closed” MAD2 (C-MAD2). The reaction has been suggested to be catalyzed by an unusual catalyst, a MAD1:C-MAD2 tetramer, but how the catalysis is executed and regulated remains elusive. Here, we report that in addition to the well-characterized middle region of MAD1 containing the MAD2-interaction motif (MIM), both N- and C-terminal domains (NTD and CTD) of MAD1 also contribute to mitotic checkpoint signaling. Unlike the MIM, which stably associated only with C-MAD2, the NTD and CTD in MAD1 surprisingly bound both O- and C-MAD2, suggesting that these two domains interact with both substrates and products of the O-to-C conversion. MAD1NTD and MAD1CTD also interacted with each other and with the MPS1 protein kinase, which phosphorylated both NTD and CTD. This phosphorylation decreased the NTD:CTD interaction and also CTD's interaction with MPS1. Of note, mutating the phosphorylation sites in the MAD1CTD, including Thr-716, compromised MAD2 binding and the checkpoint responses. We further noted that Ser-610 and Tyr-634 also contribute to the mitotic checkpoint signaling. Our results have uncovered that the MAD1NTD and MAD1CTD directly interact with each other and with MAD2 conformers and are regulated by MPS1 kinase, providing critical insights into mitotic checkpoint signaling.



Structure and function of the Leptospira interrogans peroxide stress regulator (PerR), an atypical PerR devoid of a structural metal-binding site [Protein Structure and Folding]

2018-01-12T00:06:08-08:00

Peroxide sensing is essential for bacterial survival during aerobic metabolism and host infection. Peroxide stress regulators (PerRs) are homodimeric transcriptional repressors with each monomer typically containing both structural and regulatory metal-binding sites. PerR binding to gene promoters is controlled by the presence of iron in the regulatory site, and iron-catalyzed oxidation of PerR by H2O2 leads to the dissociation of PerR from DNA. In addition to a regulatory metal, most PerRs require a structural metal for proper dimeric assembly. We present here a structural and functional characterization of the PerR from the pathogenic spirochete Leptospira interrogans, a rare example of PerR lacking a structural metal-binding site. In vivo studies showed that the leptospiral PerR belongs to the peroxide stimulon in pathogenic species and is involved in controlling resistance to peroxide. Moreover, a perR mutant had decreased fitness in other host-related stress conditions, including at 37 °C or in the presence of superoxide anion. In vitro, leptospiral PerR could bind to the perR promoter region in a metal-dependent manner. The crystal structure of the leptospiral PerR revealed an asymmetric homodimer, with one monomer displaying complete regulatory metal coordination in the characteristic caliper-like DNA-binding conformation and the second monomer exhibiting disrupted regulatory metal coordination in an open non-DNA–binding conformation. This structure showed that leptospiral PerR assembles into a dimer in which a metal-induced conformational switch can occur independently in the two monomers. Our study demonstrates that structural metal binding is not compulsory for PerR dimeric assembly and for regulating peroxide stress.



Dynamic energy dependency of Chlamydia trachomatis on host cell metabolism during intracellular growth: Role of sodium-based energetics in chlamydial ATP generation [Microbiology]

2018-01-12T00:06:08-08:00

Chlamydia trachomatis is an obligate intracellular human pathogen responsible for the most prevalent sexually-transmitted infection in the world. For decades C. trachomatis has been considered an “energy parasite” that relies entirely on the uptake of ATP from the host cell. The genomic data suggest that C. trachomatis respiratory chain could produce a sodium gradient that may sustain the energetic demands required for its rapid multiplication. However, this mechanism awaits experimental confirmation. Moreover, the relationship of chlamydiae with the host cell, in particular its energy dependence, is not well understood. In this work, we are showing that C. trachomatis has an active respiratory metabolism that seems to be coupled to the sodium-dependent synthesis of ATP. Moreover, our results show that the inhibition of mitochondrial ATP synthesis at an early stage decreases the rate of infection and the chlamydial inclusion size. In contrast, the inhibition of the chlamydial respiratory chain at mid-stage of the infection cycle decreases the inclusion size but has no effect on infection rate. Remarkably, the addition of monensin, a Na+/H+ exchanger, completely halts the infection. Altogether, our data indicate that chlamydial development has a dynamic relationship with the mitochondrial metabolism of the host, in which the bacterium mostly depends on host ATP synthesis at an early stage, and at later stages it can sustain its own energy needs through the formation of a sodium gradient.



Kinetics of H2O2-driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase [Enzymology]

2018-01-12T00:06:08-08:00

Lytic polysaccharide monooxygenases (LPMOs) catalyze the oxidative cleavage of glycosidic bonds in recalcitrant polysaccharides, such as cellulose and chitin, and are of interest in biotechnological utilization of these abundant biomaterials. It has recently been shown that LPMOs can use H2O2, instead of O2, as a cosubstrate. This peroxygenase-like reaction by a monocopper enzyme is unprecedented in nature and opens new avenues in chemistry and enzymology. Here, we provide the first detailed kinetic characterization of chitin degradation by the bacterial LPMO chitin-binding protein CBP21 using H2O2 as cosubstrate. The use of 14C-labeled chitin provided convenient and sensitive detection of the released soluble products, which enabled detailed kinetic measurements. The kcat for chitin oxidation found here (5.6 s−1) is more than an order of magnitude higher than previously reported (apparent) rate constants for reactions containing O2 but no added H2O2. The kcat/Km for H2O2-driven degradation of chitin was on the order of 106 m−1 s−1, indicating that LPMOs have catalytic efficiencies similar to those of peroxygenases. Of note, H2O2 also inactivated CBP21, but the second-order rate constant for inactivation was about 3 orders of magnitude lower than that for catalysis. In light of the observed CBP21 inactivation at higher H2O2 levels, we conclude that controlled generation of H2O2 in situ seems most optimal for fueling LPMO-catalyzed oxidation of polysaccharides.



Drosophila and human FHOD family formin proteins nucleate actin filaments [Cell Biology]

2018-01-12T00:06:08-08:00

Formins are a conserved group of proteins that nucleate and processively elongate actin filaments. Among them, the formin homology domain–containing protein (FHOD) family of formins contributes to contractility of striated muscle and cell motility in several contexts. However, the mechanisms by which they carry out these functions remain poorly understood. Mammalian FHOD proteins were reported not to accelerate actin assembly in vitro; instead, they were proposed to act as barbed end cappers or filament bundlers. Here, we show that purified Drosophila Fhod and human FHOD1 both accelerate actin assembly by nucleation. The nucleation activity of FHOD1 is restricted to cytoplasmic actin, whereas Drosophila Fhod potently nucleates both cytoplasmic and sarcomeric actin isoforms. Drosophila Fhod binds tightly to barbed ends, where it slows elongation in the absence of profilin and allows, but does not accelerate, elongation in the presence of profilin. Fhod antagonizes capping protein but dissociates from barbed ends relatively quickly. Finally, we determined that Fhod binds the sides of and bundles actin filaments. This work establishes that Fhod shares the capacity of other formins to nucleate and bundle actin filaments but is notably less effective at processively elongating barbed ends than most well studied formins.



Inherent steroid 17{alpha},20-lyase activity in defunct cytochrome P450 17A enzymes [Molecular Bases of Disease]

2018-01-12T00:06:08-08:00

Cytochrome P450 (P450) 17A1 catalyzes the oxidations of progesterone and pregnenolone and is the major source of androgens. The enzyme catalyzes both 17α-hydroxylation and a subsequent 17α,20-lyase reaction, and several mechanisms have been proposed for the latter step. Zebrafish P450 17A2 catalyzes only the 17α-hydroxylations. We previously reported high similarity of the crystal structures of zebrafish P450 17A1 and 17A2 and human P450 17A1. Five residues near the heme, which differed, were changed. We also crystallized this five-residue zebrafish P450 17A1 mutant, and the active site still resembled the structure in the other proteins, with some important differences. These P450 17A1 and 17A2 mutants had catalytic profiles more similar to each other than did the wildtype proteins. Docking with these structures can explain several minor products, which require multiple enzyme conformations. The 17α-hydroperoxy (OOH) derivatives of the steroids were used as oxygen surrogates. Human P450 17A1 and zebrafish P450s 17A1 and P450 17A2 readily converted these to the lyase products in the absence of other proteins or cofactors (with catalytically competent kinetics) plus hydroxylated 17α-hydroxysteroids. The 17α-OOH results indicate that a “Compound I” (FeO3+) intermediate is capable of formation and can be used to rationalize the products. We conclude that zebrafish P450 17A2 is capable of lyase activity with the 17α-OOH steroids because it can achieve an appropriate conformation for lyase catalysis in this system that is precluded in the conventional reaction.



Structural basis for the recognition of kinesin family member 21A (KIF21A) by the ankyrin domains of KANK1 and KANK2 proteins [Signal Transduction]

2018-01-12T00:06:08-08:00

A well-controlled microtubule organization is essential for intracellular transport, cytoskeleton maintenance, and cell development. KN motif and ankyrin repeat domain-containing protein 1 (KANK1), a member of KANK family, recruits kinesin family member 21A (KIF21A) to the cell cortex to control microtubule growth via its C-terminal ankyrin domain. However, how the KANK1 ankyrin domain recognizes KIF21A and whether other KANK proteins can also bind KIF21A remain unknown. Here, using a combination of structural, site-directed mutagenesis, and biochemical studies, we found that a stretch of ∼22 amino acids in KIF21A is sufficient for binding to KANK1 and its close homolog KANK2. We further solved the complex structure of the KIF21A peptide with either the KANK1 ankyrin domain or the KANK2 ankyrin domain. In each complex, KIF21A is recognized by two distinct pockets of the ankyrin domain and adopts helical conformations upon binding to the ankyrin domain. The elucidated KANK structures may advance our understanding of the role of KANK1 as a scaffolding molecule in controlling microtubule growth at the cell periphery.



Hyaluronan content governs tissue stiffness in pancreatic islet inflammation [Molecular Bases of Disease]

2018-01-12T00:06:08-08:00

We have identified a novel role for hyaluronan (HA), an extracellular matrix polymer, in governing the mechanical properties of inflamed tissues. We recently reported that insulitis in type 1 diabetes of mice and humans is preceded by intraislet accumulation of HA, a highly hygroscopic polymer. Using the double transgenic DO11.10 × RIPmOVA (DORmO) mouse model of type 1 diabetes, we asked whether autoimmune insulitis was associated with changes in the stiffness of islets. To measure islet stiffness, we used atomic force microscopy (AFM) and developed a novel “bed of nails”-like approach that uses quartz glass nanopillars to anchor islets, solving a long-standing problem of keeping tissue-scale objects immobilized while performing AFM. We measured stiffness via AFM nanoindentation with a spherical indenter and found that insulitis made islets mechanically soft compared with controls. Conversely, treatment with 4-methylumbelliferone, a small-molecule inhibitor of HA synthesis, reduced HA accumulation, diminished swelling, and restored basal tissue stiffness. These results indicate that HA content governs the mechanical properties of islets. In hydrogels with variable HA content, we confirmed that increased HA leads to mechanically softer hydrogels, consistent with our model. In light of recent reports that the insulin production of islets is mechanosensitive, these findings open up an exciting new avenue of research into the fundamental mechanisms by which inflammation impacts local cellular responses.



A subclass of serum anti-ZnT8 antibodies directed to the surface of live pancreatic {beta}-cells [Immunology]

2018-01-12T00:06:08-08:00

The islet-specific zinc transporter ZnT8 is a major self-antigen found in insulin granules of pancreatic β-cells. Frequent insulin secretion exposes ZnT8 to the cell surface, but the humoral antigenicity of the surface-displayed ZnT8 remains unknown. Here we show that a membrane-embedded human ZnT8 antigen triggered a vigorous immune response in ZnT8 knock-out mice. Approximately 50% of serum immunoreactivities toward ZnT8 were mapped to its transmembrane domain that is accessible to extracellular ZnT8 antibody (ZnT8A). ZnT8A binding was detected on live rat insulinoma INS-1E cells, and the binding specificity was validated by a CRISPR/Cas9 mediated ZnT8 knock-out. Applying established ZnT8A assays to purified serum antibodies from patients with type 1 diabetes, we detected human ZnT8A bound to live INS-1E cells, whereas a ZnT8 knock-out specifically reduced the surface binding. Our results demonstrate that ZnT8 is a cell surface self-antigen, raising the possibility of a direct involvement in antibody-mediated β-cell dysfunction and cytotoxicity.



Ring finger protein 126 (RNF126) suppresses ionizing radiation-induced p53-binding protein 1 (53BP1) focus formation [Signal Transduction]

2018-01-12T00:06:08-08:00

Cells have evolved sophisticated mechanisms to maintain genomic integrity in response to DNA damage. Ionizing radiation (IR)–induced DNA damage results in the formation of IR-induced foci (iRIF) in the nucleus. The iRIF formation is part of the DNA damage response (DDR), which is an essential signaling cascade that must be strictly regulated because either the loss of or an augmented DDR leads to loss of genome integrity. Accordingly, negative regulation of the DDR is as critical as its activation. In this study, we have identified ring finger protein 126 (RNF126) as a negative regulator of the DDR from a screen of iRIF containing 53BP1. RNF126 overexpression abolishes not only the formation of 53BP1 iRIF but also of RNF168, FK2, RAP80, and BRCA1. However, the iRIF formation of γH2AX, MDC1, and RNF8 is maintained, indicating that RNF126 acts between RNF8 and RNF168 during the DDR. In addition, RNF126 overexpression consistently results in the loss of RNF168-mediated H2A monoubiquitination at lysine 13/15 and inhibition of the non-homologous end joining capability. Taken together, our findings reveal that RNF126 is a novel factor involved in the negative regulation of DDR, which is important for sustaining genomic integrity.



Failed mitochondrial import and impaired proteostasis trigger SUMOylation of mitochondrial proteins [Cell Biology]

2018-01-12T00:06:08-08:00

Modification by the ubiquitin-like protein SUMO affects hundreds of cellular substrate proteins and regulates a wide variety of physiological processes. While the SUMO system appears to predominantly target nuclear proteins and, to a lesser extent, cytosolic proteins, hardly anything is known about the SUMOylation of proteins targeted to membrane-enclosed organelles. Here, we identify a large set of structurally and functionally unrelated mitochondrial proteins as substrates of the SUMO pathway in yeast. We show that SUMO modification of mitochondrial proteins does not rely on mitochondrial targeting and, in fact, is strongly enhanced upon import failure, consistent with the modification occurring in the cytosol. Moreover, SUMOylated forms of mitochondrial proteins particularly accumulate in HSP70- and proteasome-deficient cells, suggesting that SUMOylation participates in cellular protein quality control. We therefore propose that SUMO serves as a mark for nonfunctional mitochondrial proteins, which only sporadically arise in unstressed cells but strongly accumulate upon defective mitochondrial import and impaired proteostasis. Overall, our findings provide support for a role of SUMO in the cytosolic response to aberrant proteins.



The biotin-ligating protein BPL-1 is critical for lipid biosynthesis and polarization of the Caenorhabditis elegans embryo [Lipids]

2018-01-12T00:06:08-08:00

Biotin is an essential cofactor for multiple metabolic reactions catalyzed by carboxylases. Biotin is covalently linked to apoproteins by holocarboxylase synthetase (HCS). Accordingly, some mutations in HCS cause holocarboxylase deficiency, a rare metabolic disorder that can be life-threatening if left untreated. However, the long-term effects of HCS deficiency are poorly understood. Here, we report our investigations of bpl-1, which encodes the Caenorhabditis elegans ortholog of HCS. We found that mutations in the biotin-binding region of bpl-1 are maternal-effect lethal and cause defects in embryonic polarity establishment, meiosis, and the integrity of the eggshell permeability barrier. We confirmed that BPL-1 biotinylates four carboxylase enzymes, and we demonstrate that BPL-1 is required for efficient de novo fatty acid biosynthesis. We also show that the lack of larval growth defects as well as nearly normal fatty acid composition in young adult worms is due to sufficient fatty acid precursors provided by dietary bacteria. However, BPL-1 disruption strongly decreased levels of polyunsaturated fatty acids in embryos produced by bpl-1 mutant hermaphrodites, revealing a critical role for BPL-1 in lipid biosynthesis during embryogenesis and demonstrating that dietary fatty acids and lipid precursors are not adequate to support early embryogenesis in the absence of BPL-1. Our findings highlight that studying BPL-1 function in C. elegans could help dissect the roles of this important metabolic enzyme under different environmental and dietary conditions.



Src homology 2 domains enhance tyrosine phosphorylation in vivo by protecting binding sites in their target proteins from dephosphorylation [Signal Transduction]

2018-01-12T00:06:08-08:00

Phosphotyrosine (pTyr)-dependent signaling is critical for many cellular processes. It is highly dynamic, as signal output depends not only on phosphorylation and dephosphorylation rates but also on the rates of binding and dissociation of effectors containing phosphotyrosine-dependent binding modules such as Src homology 2 (SH2) and phosphotyrosine-binding (PTB) domains. Previous in vitro studies suggested that binding of SH2 and PTB domains can enhance protein phosphorylation by protecting the sites bound by these domains from phosphatase-mediated dephosphorylation. To test whether this occurs in vivo, we used the binding of growth factor receptor bound 2 (GRB2) to phosphorylated epidermal growth factor receptor (EGFR) as a model system. We analyzed the effects of SH2 domain overexpression on protein tyrosine phosphorylation by quantitative Western and far-Western blotting, mass spectrometry, and computational modeling. We found that SH2 overexpression results in a significant, dose-dependent increase in EGFR tyrosine phosphorylation, particularly of sites corresponding to the binding specificity of the overexpressed SH2 domain. Computational models using experimentally determined EGFR phosphorylation and dephosphorylation rates, and pTyr–EGFR and GRB2 concentrations, recapitulated the experimental findings. Surprisingly, both modeling and biochemical analyses suggested that SH2 domain overexpression does not result in a major decrease in the number of unbound phosphorylated SH2 domain–binding sites. Our results suggest that signaling via SH2 domain binding is buffered over a relatively wide range of effector concentrations and that SH2 domain proteins with overlapping binding specificities are unlikely to compete with one another for phosphosites in vivo.



The transcription factor Foxc1a in zebrafish directly regulates expression of nkx2.5, encoding a transcriptional regulator of cardiac progenitor cells [Gene Regulation]

2018-01-12T00:06:08-08:00

Cardiogenesis is a tightly controlled biological process required for formation of a functional heart. The transcription factor Foxc1 not only plays a crucial role in outflow tract development in mice, but is also involved in cardiac structure formation and normal function in humans. However, the molecular mechanisms by which Foxc1 controls cardiac development remain poorly understood. Previously, we reported that zebrafish embryos deficient in foxc1a, an ortholog of mammalian Foxc1, display pericardial edemas and die 9–10 days postfertilization. To further investigate Foxc1a's role in zebrafish cardiogenesis and identify its downstream target genes during early heart development, we comprehensively analyzed the cardiovascular phenotype of foxc1a-null zebrafish embryos. Our results confirmed that foxc1a-null mutants exhibit disrupted cardiac morphology, structure, and function. Performing transcriptome analysis on the foxc1a mutants, we found that the expression of the cardiac progenitor marker gene nkx2.5 was significantly decreased, but the expression of germ layer–patterning genes was unaffected. Dual-fluorescence in situ hybridization assays revealed that foxc1a and nkx2.5 are co-expressed in the anterior lateral plate mesoderm at the somite stage. Chromatin immunoprecipitation and promoter truncation assays disclosed that Foxc1a regulates nkx2.5 expression via direct binding to two noncanonical binding sites in the proximal nkx2.5 promoter. Moreover, functional rescue experiments revealed that developmental stage–specific nkx2.5 overexpression partially rescues the cardiac defects of the foxc1a-null embryos. Taken together, our results indicate that during zebrafish cardiogenesis, Foxc1a is active directly upstream of nkx2.5.



Kinetic mechanism of controlled Fab-arm exchange for the formation of bispecific immunoglobulin G1 antibodies [Protein Structure and Folding]

2018-01-12T00:06:08-08:00

Bispecific antibodies (bsAbs) combine the antigen specificities of two distinct Abs and demonstrate therapeutic promise based on novel mechanisms of action. Among the many platforms for creating bsAbs, controlled Fab-arm exchange (cFAE) has proven useful based on minimal changes to native Ab structure and the simplicity with which bsAbs can be formed from two parental Abs. Despite a published protocol for cFAE and its widespread use in the pharmaceutical industry, the reaction mechanism has not been determined. Knowledge of the mechanism could lead to improved yields of bsAb at faster rates as well as foster adoption of process control. In this work, a combination of Förster resonance energy transfer (FRET), nonreducing SDS-PAGE, and strategic mutation of the Ab hinge region was employed to identify and characterize the individual steps of cFAE. Fluorescence correlation spectroscopy (FCS) was used to determine the affinity of parental (homodimer) and bispecific (heterodimer) interactions within the CH3 domain, further clarifying the thermodynamic basis for bsAb formation. The result is a clear sequence of events with rate constants that vary with experimental conditions, where dissociation of the K409R parental Ab into half-Ab controls the rate of the reaction.



IL-10 promoter transactivation by the viral K-RTA protein involves the host-cell transcription factors, specificity proteins 1 and 3 [Microbiology]

2018-01-12T00:06:08-08:00

Kaposi's sarcoma-associated herpesvirus (KSHV)/human herpesvirus-8 (HHV-8) causes a persistent infection, presenting latent and lytic replication phases during its life cycle. KSHV-related diseases are associated with deregulated expression of inflammatory cytokines, including IL-6 and IL-10, but the mechanisms underlying this dysregulation are unclear. Herein, we report a molecular mechanism for KSHV-induced IL-10 gene expression. KSHV replication and transcription activator (K-RTA) is a molecular switch for the initiation of expression of viral lytic genes, and we describe, for the first time, that K-RTA significantly activates the promoter of the human IL-10 gene. Of note, mutations involving a basic region of K-RTA reduced the association of K-RTA with the IL-10 promoter. Moreover, the host-cell transcription factors, specificity proteins (SP) 1 and 3, play a pivotal cooperative role in K-RTA–mediated transactivation of the IL-10 promoter. K-RTA can interact with SP1 and SP3 directly in vitro, and electrophoresis mobility shift assays (EMSAs) revealed co-operative interaction involving K-RTA, SP1, and SP3 in binding to the IL-10 promoter. As DNase I footprinting assays indicated that K-RTA did not affect SP3 binding to the IL-10 promoter, SP3 can function to recruit K-RTA to the IL-10 promoter. These findings indicate that K-RTA can directly contribute to IL-10 up-regulation via a functional interplay with the cellular transcription factors SP1 and SP3.



A photo-cross-linking approach to monitor folding and assembly of newly synthesized proteins in a living cell [Microbiology]

2018-01-12T00:06:08-08:00

Many proteins form multimeric complexes that play crucial roles in various cellular processes. Studying how proteins are correctly folded and assembled into such complexes in a living cell is important for understanding the physiological roles and the qualitative and quantitative regulation of the complex. However, few methods are suitable for analyzing these rapidly occurring processes. Site-directed in vivo photo-cross-linking is an elegant technique that enables analysis of protein–protein interactions in living cells with high spatial resolution. However, the conventional site-directed in vivo photo-cross-linking method is unsuitable for analyzing dynamic processes. Here, by combining an improved site-directed in vivo photo-cross-linking technique with a pulse–chase approach, we developed a new method that can analyze the folding and assembly of a newly synthesized protein with high spatiotemporal resolution. We demonstrate that this method, named the pulse–chase and in vivo photo-cross-linking experiment (PiXie), enables the kinetic analysis of the formation of an Escherichia coli periplasmic (soluble) protein complex (PhoA). We also used our new technique to investigate assembly/folding processes of two membrane complexes (SecD–SecF in the inner membrane and LptD–LptE in the outer membrane), which provided new insights into the biogenesis of these complexes. Our PiXie method permits analysis of the dynamic behavior of various proteins and enables examination of protein–protein interactions at the level of individual amino acid residues. We anticipate that our new technique will have valuable utility for studies of protein dynamics in many organisms.



A hereditary spastic paraplegia-associated atlastin variant exhibits defective allosteric coupling in the catalytic core [Membrane Biology]

2018-01-12T00:06:08-08:00

The dynamin-related GTPase atlastin (ATL) catalyzes membrane fusion of the endoplasmic reticulum and thus establishes a network of branched membrane tubules. When ATL function is compromised, the morphology of the endoplasmic reticulum deteriorates, and these defects can result in neurological disorders such as hereditary spastic paraplegia and hereditary sensory neuropathy. ATLs harness the energy of GTP hydrolysis to initiate a series of conformational changes that enable homodimerization and subsequent membrane fusion. Disease-associated amino acid substitutions cluster in regions adjacent to ATL's catalytic site, but the consequences for the GTPase's molecular mechanism are often poorly understood. Here, we elucidate structural and functional defects of an atypical hereditary spastic paraplegia mutant, ATL1-F151S, that is impaired in its nucleotide-hydrolysis cycle but can still adopt a high-affinity homodimer when bound to a transition-state analog. Crystal structures of mutant proteins yielded models of the monomeric pre- and post-hydrolysis states of ATL. Together, these findings define a mechanism for allosteric coupling in which Phe151 is the central residue in a hydrophobic interaction network connecting the active site to an interdomain interface responsible for nucleotide loading.



Autopolysialylation of polysialyltransferases is required for polysialylation and polysialic acid chain elongation on select glycoprotein substrates [Glycobiology and Extracellular Matrices]

2018-01-12T00:06:08-08:00

Polysialic acid (polySia) is a large glycan polymer that is added to some glycoproteins by two polysialyltransferases (polySTs), ST8Sia-II and ST8Sia-IV. As polySia modulates cell adhesion and signaling, immune cell function, and tumor metastasis, it is of interest to determine how the polySTs recognize their select substrates. We have recently identified residues within the ST8Sia-IV polybasic region (PBR) that are required for neural cell adhesion molecule (NCAM) recognition and subsequent polysialylation. Here, we compared the PBR sequence requirements for NCAM, neuropilin-2 (NRP-2), and synaptic cell adhesion molecule 1 (SynCAM 1) for polysialylation by their respective polySTs. We found that the polySTs use unique but overlapping sets of PBR residues for substrate recognition, that the NCAM-recognizing PBR sites in ST8Sia-II and ST8Sia-IV include homologous residues, but that the ST8Sia-II site is larger, and that fewer PBR residues are involved in NRP-2 and SynCAM 1 recognition than in NCAM recognition. Noting that the two sites for ST8Sia-IV autopolysialylation flank the PBR, we evaluated the role of PBR residues in autopolysialylation and found that the requirements for polyST autopolysialylation and substrate polysialylation overlap. These data together with the evaluation of the polyST autopolysialylation mechanism enabled us to further identify PBR residues potentially playing dual roles in substrate recognition and in polySia chain polymerization. Finally, we found that ST8Sia-IV autopolysialylation is required for NRP-2 polysialylation and that ST8Sia-II autopolysialylation promotes the polymerization of longer polySia chains on SynCAM 1, suggesting a critical role for polyST autopolysialylation in substrate selection and polySia chain elongation.



The EPAC-Rap1 pathway prevents and reverses cytokine-induced retinal vascular permeability [Signal Transduction]

2018-01-12T00:06:08-08:00

Increased retinal vascular permeability contributes to macular edema, a leading cause of vision loss in eye pathologies such as diabetic retinopathy, age-related macular degeneration, and central retinal vein occlusions. Pathological changes in vascular permeability are driven by growth factors such as VEGF and pro-inflammatory cytokines such as TNF-α. Identifying the pro-barrier mechanisms that block vascular permeability and restore the blood–retinal barrier (BRB) may lead to new therapies. The cAMP-dependent guanine nucleotide exchange factor (EPAC) exchange-protein directly activated by cAMP promotes exchange of GTP in the small GTPase Rap1. Rap1 enhances barrier properties in human umbilical endothelial cells by promoting adherens junction assembly. We hypothesized that the EPAC–Rap1 signaling pathway may regulate the tight junction complex of the BRB and may restore barrier properties after cytokine-induced permeability. Here, we show that stimulating EPAC or Rap1 activation can prevent or reverse VEGF- or TNF-α–induced permeability in cell culture and in vivo. Moreover, EPAC activation inhibited VEGF receptor (VEGFR) signaling through the Ras/MEK/ERK pathway. We also found that Rap1B knockdown or an EPAC antagonist increases endothelial permeability and that VEGF has no additive effect, suggesting a common pathway. Furthermore, GTP-bound Rap1 promoted tight junction assembly, and loss of Rap1B led to loss of junctional border organization. Collectively, our results indicate that the EPAC–Rap1 pathway helps maintain basal barrier properties in the retinal vascular endothelium and activation of the EPAC–Rap1 pathway may therefore represent a potential therapeutic strategy to restore the BRB.



A guanine nucleotide exchange factor (GEF) limits Rab GTPase-driven membrane fusion [Membrane Biology]

2018-01-12T00:06:08-08:00

The identity of organelles in the endomembrane system of any eukaryotic cell critically depends on the correctly localized Rab GTPase, which binds effectors and thus promotes membrane remodeling or fusion. However, it is still unresolved which factors are required and therefore define the localization of the correct fusion machinery. Using SNARE-decorated proteoliposomes that cannot fuse on their own, we now demonstrate that full fusion activity can be achieved by just four soluble factors: a soluble SNARE (Vam7), a guanine nucleotide exchange factor (GEF, Mon1–Ccz1), a Rab–GDP dissociation inhibitor (GDI) complex (prenylated Ypt7–GDI), and a Rab effector complex (HOPS). Our findings reveal that the GEF Mon1–Ccz1 is necessary and sufficient for stabilizing prenylated Ypt7 on membranes. HOPS binding to Ypt7-GTP then drives SNARE-mediated fusion, which is fully GTP-dependent. We conclude that an entire fusion cascade can be controlled by a GEF.



Loss of {alpha}B-crystallin function in zebrafish reveals critical roles in the development of the lens and stress resistance of the heart [Developmental Biology]

2018-01-12T00:06:08-08:00

Genetic mutations in the human small heat shock protein αB-crystallin have been implicated in autosomal cataracts and skeletal myopathies, including heart muscle diseases (cardiomyopathy). Although these mutations lead to modulation of their chaperone activity in vitro, the in vivo functions of αB-crystallin in the maintenance of both lens transparency and muscle integrity remain unclear. This lack of information has hindered a mechanistic understanding of these diseases. To better define the functional roles of αB-crystallin, we generated loss-of-function zebrafish mutant lines by utilizing the CRISPR/Cas9 system to specifically disrupt the two αB-crystallin genes, αBa and αBb. We observed lens abnormalities in the mutant lines of both genes, and the penetrance of the lens phenotype was higher in αBa than αBb mutants. This finding is in contrast with the lack of a phenotype previously reported in αB-crystallin knock-out mice and suggests that the elevated chaperone activity of the two zebrafish orthologs is critical for lens development. Besides its key role in the lens, we uncovered another critical role for αB-crystallin in providing stress tolerance to the heart. The αB-crystallin mutants exhibited hypersusceptibility to develop pericardial edema when challenged by crowding stress or exposed to elevated cortisol stress, both of which activate glucocorticoid receptor signaling. Our work illuminates the involvement of αB-crystallin in stress tolerance of the heart presumably through the proteostasis network and reinforces the critical role of the chaperone activity of αB-crystallin in the maintenance of lens transparency.



Pregnane X receptor promotes ethanol-induced hepatosteatosis in mice [Metabolism]

2018-01-05T00:06:08-08:00

The pregnane X receptor (PXR, NR1I2) is a xenobiotic-sensing nuclear receptor that modulates the metabolic response to drugs and toxic agents. Both PXR activation and deficiency promote hepatic triglyceride accumulation, a hallmark feature of alcoholic liver disease. However, the molecular mechanism of PXR-mediated activation of ethanol (EtOH)-induced steatosis is unclear. Here, using male wildtype (WT) and Pxr-null mice, we examined PXR-mediated regulation of chronic EtOH–induced hepatic lipid accumulation and hepatotoxicity. EtOH ingestion for 8 weeks significantly (1.8-fold) up-regulated Pxr mRNA levels in WT mice. The EtOH exposure also increased mRNAs encoding hepatic constitutive androstane receptor (3-fold) and its target, Cyp2b10 (220-fold), in a PXR-dependent manner. Furthermore, WT mice had higher serum EtOH levels and developed hepatic steatosis characterized by micro- and macrovesicular lipid accumulation. Consistent with the development of steatosis, lipogenic gene induction was significantly increased in WT mice, including sterol regulatory element–binding protein 1c target gene fatty-acid synthase (3.0-fold), early growth response-1 (3.2-fold), and TNFα (3.0-fold), whereas the expression of peroxisome proliferator–activated receptor α target genes was suppressed. Of note, PXR deficiency suppressed these changes and steatosis. Protein levels, but not mRNAs levels, of EtOH-metabolizing enzymes, including alcohol dehydrogenase 1, aldehyde dehydrogenase 1A1, and catalase, as well as the microsomal triglyceride transfer protein, involved in regulating lipid output were higher in Pxr-null than in WT mice. These findings establish that PXR signaling contributes to ALD development and suggest that PXR antagonists may provide a new approach for ALD therapy.



An improved Escherichia coli screen for Rubisco identifies a protein-protein interface that can enhance CO2-fixation kinetics [Plant Biology]

2018-01-05T00:06:09-08:00

An overarching goal of photosynthesis research is to identify how components of the process can be improved to benefit crop productivity, global food security, and renewable energy storage. Improving carbon fixation has mostly focused on enhancing the CO2 fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). This grand challenge has mostly proved ineffective because of catalytic mechanism constraints and required chaperone complementarity that hinder Rubisco biogenesis in alternative hosts. Here we refashion Escherichia coli metabolism by expressing a phosphoribulokinase-neomycin phosphotransferase fusion protein to produce a high-fidelity, high-throughput Rubisco-directed evolution (RDE2) screen that negates false-positive selection. Successive evolution rounds using the plant-like Te-Rubisco from the cyanobacterium Thermosynechococcus elongatus BP1 identified two large subunit and six small subunit mutations that improved carboxylation rate, efficiency, and specificity. Structural analysis revealed the amino acids clustered in an unexplored subunit interface of the holoenzyme. To study its effect on plant growth, the Te-Rubisco was transformed into tobacco by chloroplast transformation. As previously seen for Synechocccus PCC6301 Rubisco, the specialized folding and assembly requirements of Te-Rubisco hinder its heterologous expression in leaf chloroplasts. Our findings suggest that the ongoing efforts to improve crop photosynthesis by integrating components of a cyanobacteria CO2-concentrating mechanism will necessitate co-introduction of the ancillary molecular components required for Rubisco biogenesis.



Stilbenoid prenyltransferases define key steps in the diversification of peanut phytoalexins [Enzymology]

2018-01-05T00:06:09-08:00

Defense responses of peanut (Arachis hypogaea) to biotic and abiotic stresses include the synthesis of prenylated stilbenoids. Members of this compound class show several protective activities in human disease studies, and the list of potential therapeutic targets continues to expand. Despite their medical and biological importance, the biosynthetic pathways of prenylated stilbenoids remain to be elucidated, and the genes encoding stilbenoid-specific prenyltransferases have yet to be identified in any plant species. In this study, we combined targeted transcriptomic and metabolomic analyses to discover prenyltransferase genes in elicitor-treated peanut hairy root cultures. Transcripts encoding five enzymes were identified, and two of these were functionally characterized in a transient expression system consisting of Agrobacterium-infiltrated leaves of Nicotiana benthamiana. We observed that one of these prenyltransferases, AhR4DT-1, catalyzes a key reaction in the biosynthesis of prenylated stilbenoids, in which resveratrol is prenylated at its C-4 position to form arachidin-2, whereas another, AhR3′DT-1, added the prenyl group to C-3′ of resveratrol. Each of these prenyltransferases was highly specific for stilbenoid substrates, and we confirmed their subcellular location in the plastid by fluorescence microscopy. Structural analysis of the prenylated stilbenoids suggested that these two prenyltransferase activities represent the first committed steps in the biosynthesis of a large number of prenylated stilbenoids and their derivatives in peanut. In summary, we have identified five candidate prenyltransferases in peanut and confirmed that two of them are stilbenoid-specific, advancing our understanding of this specialized enzyme family and shedding critical light onto the biosynthesis of bioactive stilbenoids.



An ultra-stable single-chain insulin analog resists thermal inactivation and exhibits biological signaling duration equivalent to the native protein [Molecular Biophysics]

2018-01-05T00:06:09-08:00

Thermal degradation of insulin complicates its delivery and use. Previous efforts to engineer ultra-stable analogs were confounded by prolonged cellular signaling in vivo, of unclear safety and complicating mealtime therapy. We therefore sought an ultra-stable analog whose potency and duration of action on intravenous bolus injection in diabetic rats are indistinguishable from wild-type (WT) insulin. Here, we describe the structure, function, and stability of such an analog, a 57-residue single-chain insulin (SCI) with multiple acidic substitutions. Cell-based studies revealed native-like signaling properties with negligible mitogenic activity. Its crystal structure, determined as a novel zinc-free hexamer at 2.8 Å, revealed a native insulin fold with incomplete or absent electron density in the C domain; complementary NMR studies are described in the accompanying article. The stability of the analog (ΔGU 5.0(±0.1) kcal/mol at 25 °C) was greater than that of WT insulin (3.3(±0.1) kcal/mol). On gentle agitation, the SCI retained full activity for >140 days at 45 °C and >48 h at 75 °C. These findings indicate that marked resistance to thermal inactivation in vitro is compatible with native duration of activity in vivo. Further, whereas WT insulin forms large and heterogeneous aggregates above the standard 0.6 mm pharmaceutical strength, perturbing the pharmacokinetic properties of concentrated formulations, dynamic light scattering, and size-exclusion chromatography revealed only limited SCI self-assembly and aggregation in the concentration range 1–7 mm. Such a combination of favorable biophysical and biological properties suggests that SCIs could provide a global therapeutic platform without a cold chain.



Solution structure of an ultra-stable single-chain insulin analog connects protein dynamics to a novel mechanism of receptor binding [Molecular Biophysics]

2018-01-05T00:06:09-08:00

Domain-minimized insulin receptors (IRs) have enabled crystallographic analysis of insulin-bound “micro-receptors.” In such structures, the C-terminal segment of the insulin B chain inserts between conserved IR domains, unmasking an invariant receptor-binding surface that spans both insulin A and B chains. This “open” conformation not only rationalizes the inactivity of single-chain insulin (SCI) analogs (in which the A and B chains are directly linked), but also suggests that connecting (C) domains of sufficient length will bind the IR. Here, we report the high-resolution solution structure and dynamics of such an active SCI. The hormone's closed-to-open transition is foreshadowed by segmental flexibility in the native state as probed by heteronuclear NMR spectroscopy and multiple conformer simulations of crystallographic protomers as described in the companion article. We propose a model of the SCI's IR-bound state based on molecular-dynamics simulations of a micro-receptor complex. In this model, a loop defined by the SCI's B and C domains encircles the C-terminal segment of the IR α-subunit. This binding mode predicts a conformational transition between an ultra-stable closed state (in the free hormone) and an active open state (on receptor binding). Optimization of this switch within an ultra-stable SCI promises to circumvent insulin's complex global cold chain. The analog's biphasic activity, which serendipitously resembles current premixed formulations of soluble insulin and microcrystalline suspension, may be of particular utility in the developing world.



Role of salt bridges in the dimer interface of 14-3-3{zeta} in dimer dynamics, N-terminal {alpha}-helical order, and molecular chaperone activity [Protein Structure and Folding]

2018-01-05T00:06:09-08:00

The 14-3-3 family of intracellular proteins are dimeric, multifunctional adaptor proteins that bind to and regulate the activities of many important signaling proteins. The subunits within 14-3-3 dimers are predicted to be stabilized by salt bridges that are largely conserved across the 14-3-3 protein family and allow the different isoforms to form heterodimers. Here, we have examined the contributions of conserved salt-bridging residues in stabilizing the dimeric state of 14-3-3ζ. Using analytical ultracentrifugation, our results revealed that Asp21 and Glu89 both play key roles in dimer dynamics and contribute to dimer stability. Furthermore, hydrogen-deuterium exchange coupled with mass spectrometry showed that mutation of Asp21 promoted disorder in the N-terminal helices of 14-3-3ζ, suggesting that this residue plays an important role in maintaining structure across the dimer interface. Intriguingly, a D21N 14-3-3ζ mutant exhibited enhanced molecular chaperone ability that prevented amorphous protein aggregation, suggesting a potential role for N-terminal disorder in 14-3-3ζ's poorly understood chaperone action. Taken together, these results imply that disorder in the N-terminal helices of 14-3-3ζ is a consequence of the dimer–monomer dynamics and may play a role in conferring chaperone function to 14-3-3ζ protein.



Structural analyses unravel the molecular mechanism of cyclic di-GMP regulation of bacterial chemotaxis via a PilZ adaptor protein [Enzymology]

2018-01-05T00:06:09-08:00

The bacterial second messenger cyclic di-GMP (c-di-GMP) has emerged as a prominent mediator of bacterial physiology, motility, and pathogenicity. c-di-GMP often regulates the function of its protein targets through a unique mechanism that involves a discrete PilZ adaptor protein. However, the molecular mechanism for PilZ protein–mediated protein regulation is unclear. Here, we present the structure of the PilZ adaptor protein MapZ cocrystallized in complex with c-di-GMP and its protein target CheR1, a chemotaxis-regulating methyltransferase in Pseudomonas aeruginosa. This cocrystal structure, together with the structure of free CheR1, revealed that the binding of c-di-GMP induces dramatic structural changes in MapZ that are crucial for CheR1 binding. Importantly, we found that restructuring and repositioning of two C-terminal helices enable MapZ to disrupt the CheR1 active site by dislodging a structural domain. The crystallographic observations are reinforced by protein–protein binding and single cell–based flagellar motor switching analyses. Our studies further suggest that the regulation of chemotaxis by c-di-GMP through MapZ orthologs/homologs is widespread in proteobacteria and that the use of allosterically regulated C-terminal motifs could be a common mechanism for PilZ adaptor proteins. Together, the findings provide detailed structural insights into how c-di-GMP controls the activity of an enzyme target indirectly through a PilZ adaptor protein.



Is Lgr4 essential for VSV- and VSV-G-pseudotyped lentiviral vector entry to cells? [Letters to the Editor]

2018-01-05T00:06:09-08:00

A recently published paper concluded that Lgr4 is essential for vesicular stomatitis virus (VSV) entry to cells (1), in contrast with independently confirmed studies, showing that VSV infects cells through the LDL receptor (LDLR) and/or its family members (2–4). This report raises many concerns, suggesting that Lgr4 is not involved in VSV entry. I will address three key issues.1. VSV-G and Lgr4 ectodomains (ECD) have been expressed without the signal peptide. Hence, they did not translocate into the ER and, therefore, did not form correct disulfide bridges, nor acquire the oligosaccharide side chains, which are important for correct folding of the VSV-G ectodomain. Therefore, the described co-immunoprecipitations (Fig. 5B of Ref. 1) could stem from aggregation of the misfolded VSV-G–ECD and LGR4-ECD.2. The interpretation of the Biacore experiments (Fig. 5D of Ref. 1) is very difficult, as most of the binding shown is irreversible. The graph shows only association curves, whereas the dissociation curves are missing for all but the highest concentration. A quick look suggests a half-effect at 500–700 nm, and, therefore, the claimed Kd of ∼70 nm cannot be correct.3. Furthermore, the claimed 70 nm value is not consistent with the concentration required for VSV neutralization (200 μg/ml, ≅4 μm, Fig. 6A of Ref. 1). By comparison, the IC50 of LDLR-ECD is 55 ng/ml (2). Thus, on weight basis, LGR4-ECD is ∼3600 times less potent than LDLR-ECD. Therefore, the author's statement that “soluble LGR4-ECD … could inhibit VSV infection… showing great potential for treating vesicular stomatitis” is unfounded.



Reply to Rubinstein: Is Lgr4 essential for VSV- and VSV-G-pseudotyped lentiviral vector entry to cells? [Letters to the Editor]

2018-01-05T00:06:09-08:00

This is a response to a letter by Rubinstein (1).In response to the concerns delineated in a letter by Menachem Rubinstein (1), we found that protein truncation without an endogenous signal peptide is commonly performed in co-immunoprecipitation (2). Furthermore, there was no aggregation or precipitation of misfolded protein in our co-immunoprecipitation assay (Fig. 5B of Ref. 3), and the truncated LGR4-ECD (25–528 amino acids) has well-demonstrated bioactivity, as shown in our previous paper (4). Moreover, the data from our pull-down (Fig. 5C) and Biacore assays (Fig. 5, D and E) confirmed that a strong interaction exists between Lgr4 and intact VSV particles (3).On the question of binding affinity, according to the affinity model, fast estimation of KD is reasonable only when the binding is saturated. In our case, it was hard to reach saturation for every concentration curve. Thus, as in other studies (see, for example, Ref. 5), the kinetics model was the only choice. Upon kinetic regression, the results showed that Kon = 15,450 m−1 s−1, Koff = 0.001067 s−1, and KD = Kd/Ka = 69.05 nm.Finally, the IC50 for LDLR-ECD cited by Dr. Rubinstein refers to sLDLR-mediated inhibition of vesicular stomatitis virus (VSV)–induced cytopathic effects in human WISH cells (Fig. 1A of Ref. 6). In contrast, we detected inhibition of VSV replication by LGR4-ECD in mouse MEF cells by quantitative PCR (Fig. 6A of Ref. 3). It is highly problematic to compare IC50 values determined using different assays, different cells, different expression systems, and different proteins.Taken together, we...



Role of the PWWP domain of lens epithelium-derived growth factor (LEDGF)/p75 cofactor in lentiviral integration targeting. [Withdrawals/Retractions]

2018-01-05T00:06:09-08:00

VOLUME 286 (2011) PAGES 41812–41825This article has been withdrawn by the authors. The authors have become aware of a duplication of two lanes (the PWWPHRP2-LEDGF and HDGF-LEDGF325–530 lanes) in Fig. 2 of this manuscript and withdraw the article in the interests of maintaining their publication standards and those of the journal.



Heart failure-induced activation of phospholipase iPLA2{gamma} generates hydroxyeicosatetraenoic acids opening the mitochondrial permeability transition pore [Metabolism]

2018-01-05T00:06:09-08:00

Congestive heart failure typically arises from cardiac myocyte necrosis/apoptosis, associated with the pathological opening of the mitochondrial permeability transition pore (mPTP). mPTP opening decreases the mitochondrial membrane potential leading to the activation of Ca2+-independent phospholipase A2γ (iPLA2γ) and the production of downstream toxic metabolites. However, the array of enzymatic mediators and the exact chemical mechanisms responsible for modulating myocardial mPTP opening remain unclear. Herein, we demonstrate that human heart failure activates specific myocardial mitochondrial phospholipases that increase Ca2+-dependent production of toxic hydroxyeicosatetraenoic acids (HETEs) and attenuate the activity of phospholipases that promote the synthesis of protective epoxyeicosatrienoic acids (EETs). Mechanistically, HETEs activated the Ca2+-induced opening of the mPTP in failing human myocardium, and the highly selective pharmacological blockade of either iPLA2γ or lipoxygenases attenuated mPTP opening in failing hearts. In contrast, pharmacological inhibition of cytochrome P450 epoxygenases opened the myocardial mPTP in human heart mitochondria. Remarkably, the major mitochondrial phospholipase responsible for Ca2+-activated release of arachidonic acid (AA) in mitochondria from non-failing hearts was calcium-dependent phospholipase A2ζ (cPLA2ζ) identified by sequential column chromatographies and activity-based protein profiling. In contrast, iPLA2γ predominated in failing human myocardium. Stable isotope kinetics revealed that in non-failing human hearts, cPLA2ζ metabolically channels arachidonic acid into EETs, whereas in failing hearts, increased iPLA2γ activity channels AA into toxic HETEs. These results mechanistically identify the sequelae of pathological remodeling of human mitochondrial phospholipases in failing myocardium. This remodeling metabolically channels AA into toxic HETEs promoting mPTP opening, which induces necrosis/apoptosis leading to further progression of heart failure.



“HETE”ing up mitochondria in human heart failure [Metabolism]

2018-01-05T00:06:09-08:00

A decade of research has established the phospholipase iPLA2γ as being involved in cardiomyocyte dysfunction and necrosis leading to heart failure, but the mechanisms by which iPLA2γ acts and its interaction with the mitochondrial permeability transition pore (mPTP) that is critical for cardiac homeostasis are unclear. New investigations by Moon et al. demonstrate that mitochondria in failing hearts undergo dynamic shifts in PLA2 isoform expression, leading to a redistribution of eicosanoid composition that contributes to pathologic mPTP opening.



Optineurin promotes autophagosome formation by recruiting the autophagy-related Atg12-5-16L1 complex to phagophores containing the Wipi2 protein [Membrane Biology]

2018-01-05T00:06:09-08:00

Autophagy is a quality-control mechanism that helps to maintain cellular homeostasis by removing damaged proteins and organelles through lysosomal degradation. During autophagy, signaling events lead to the formation of a cup-shaped structure called the phagophore that matures into the autophagosome. Recruitment of the autophagy-associated Atg12-5-16L1 complex to Wipi2-positive phagophores is crucial for producing microtubule-associated protein 1 light chain 3-II (LC3-II), which is required for autophagosome formation. Here, we explored the role of the autophagy receptor optineurin (Optn) in autophagosome formation. Fibroblasts from Optn knock-out mouse showed reduced LC3-II formation and a lower number of autophagosomes and autolysosomes during both basal and starvation-induced autophagy. However, the number of Wipi2-positive phagophores was not decreased in Optn-deficient cells. We also found that the number of Atg12/16L1-positive puncta and recruitment of the Atg12-5-16L1 complex to Wipi2-positive puncta are reduced in Optn-deficient cells. Of note, Optn was recruited to Atg12-5-16L1–positive puncta, and interacted with Atg5 and also with Atg12-5 conjugate. A disease-associated Optn mutant, E478G, defective in ubiquitin binding, was also defective in autophagosome formation and recruitment to the Atg12-5-16L1–positive puncta. Moreover, we noted that Optn phosphorylation at Ser-177 was required for autophagosome formation but not for Optn recruitment to the phagophore. These results suggest that Optn potentiates LC3-II production and maturation of the phagophore into the autophagosome, by facilitating the recruitment of the Atg12-5-16L1 complex to Wipi2-positive phagophores.



The actin-organizing formin protein Fhod3 is required for postnatal development and functional maintenance of the adult heart in mice [Developmental Biology]

2018-01-05T00:06:09-08:00

Cardiac development and function require actin–myosin interactions in the sarcomere, a highly organized contractile structure. Sarcomere assembly mediated by formin homology 2 domain-containing 3 (Fhod3), a member of formins that directs formation of straight actin filaments, is essential for embryonic cardiogenesis. However, the role of Fhod3 in the neonatal and adult stages has remained unknown. Here, we generated floxed Fhod3 mice to bypass the embryonic lethality of an Fhod3 knockout (KO). Perinatal KO of Fhod3 in the heart caused juvenile lethality at around day 10 after birth with enlarged hearts composed of severely impaired myofibrils, indicating that Fhod3 is crucial for postnatal heart development. Tamoxifen-induced conditional KO of Fhod3 in the adult heart neither led to lethal effects nor did it affect sarcomere structure and localization of sarcomere components. However, adult Fhod3-deleted mice exhibited a slight cardiomegaly and mild impairment of cardiac function, conditions that were sustained over 1 year without compensation during aging. In addition to these age-related changes, systemic stimulation with the α1-adrenergic receptor agonist phenylephrine, which induces sustained hypertension and hypertrophy development, induced expression of fetal cardiac genes that was more pronounced in adult Fhod3-deleted mice than in the control mice, suggesting that Fhod3 modulates hypertrophic changes in the adult heart. We conclude that Fhod3 plays a crucial role in both postnatal cardiac development and functional maintenance of the adult heart.



Chronic oxidative stress promotes GADD34-mediated phosphorylation of the TAR DNA-binding protein TDP-43, a modification linked to neurodegeneration [Cell Biology]

2018-01-05T00:06:09-08:00

Oxidative and endoplasmic reticulum (ER) stresses are hallmarks of the pathophysiology of ALS and other neurodegenerative diseases. In these stresses, different kinases phosphorylate eukaryotic initiation factor eIF2α, enabling the translation of stress response genes; among these is GADD34, the protein product of which recruits the α-isoform of protein phosphatase 1 catalytic subunit (PP1α) and eIF2α to assemble a phosphatase complex catalyzing eIF2α dephosphorylation and resumption of protein synthesis. Aberrations in this pathway underlie the aforementioned disorders. Previous observations indicating that GADD34 is induced by arsenite, a thiol-directed oxidative stressor, in the absence of eIF2α phosphorylation suggest other roles for GADD34. Here, we report that arsenite-induced oxidative stress differs from thapsigargin- or tunicamycin-induced ER stress in promoting GADD34 transcription and the preferential translation of its mRNA in the absence of eIF2α phosphorylation. Arsenite also stabilized GADD34 protein, slowing its degradation. In response to oxidative stress, but not ER stress, GADD34 recruited TDP-43, and enhanced cytoplasmic distribution and cysteine modifications of TDP-43 promoted its binding to GADD34. Arsenite also recruited a TDP-43 kinase, casein kinase-1ϵ (CK1ϵ), to GADD34. Concomitant with TDP-43 aggregation and proteolysis after prolonged arsenite exposure, GADD34-bound CK1ϵ catalyzed TDP-43 phosphorylations at serines 409/410, which were diminished or absent in GADD34−/− cells. Our findings highlight that the phosphatase regulator, GADD34, also functions as a kinase scaffold in response to chronic oxidative stress and recruits CK1ϵ and oxidized TDP-43 to facilitate its phosphorylation, as seen in TDP-43 proteinopathies.



Structure-function analyses reveal key features in Staphylococcus aureus IsdB-associated unfolding of the heme-binding pocket of human hemoglobin [Protein Structure and Folding]

2018-01-05T00:06:09-08:00

IsdB is a receptor on the surface of the bacterial pathogen Staphylococcus aureus that extracts heme from hemoglobin (Hb) to enable growth on Hb as a sole iron source. IsdB is critically important both for in vitro growth on Hb and in infection models and is also highly up-regulated in blood, serum, and tissue infection models, indicating a key role of this receptor in bacterial virulence. However, structural information for IsdB is limited. We present here a crystal structure of a complex between human Hb and IsdB. In this complex, the α subunits of Hb are refolded with the heme displaced to the interface with IsdB. We also observe that atypical residues of Hb, His58 and His89 of αHb, coordinate to the heme iron, which is poised for transfer into the heme-binding pocket of IsdB. Moreover, the porphyrin ring interacts with IsdB residues Tyr440 and Tyr444. Previously, Tyr440 was observed to coordinate heme iron in an IsdB·heme complex structure. A Y440F/Y444F IsdB variant we produced was defective in heme transfer yet formed a stable complex with Hb (Kd = 6 ± 2 μm) in solution with spectroscopic features of the bis-His species observed in the crystal structure. Haptoglobin binds to a distinct site on Hb to inhibit heme transfer to IsdB and growth of S. aureus, and a ternary complex of IsdB·Hb·Hp was observed. We propose a model for IsdB heme transfer from Hb that involves unfolding of Hb and heme iron ligand exchange.



Mechanism of polypurine tract primer generation by HIV-1 reverse transcriptase [Enzymology]

2018-01-05T00:06:09-08:00

HIV-1 reverse transcriptase (RT) possesses both DNA polymerase activity and RNase H activity that act in concert to convert single-stranded RNA of the viral genome to double-stranded DNA that is then integrated into the DNA of the infected cell. Reverse transcriptase–catalyzed reverse transcription critically relies on the proper generation of a polypurine tract (PPT) primer. However, the mechanism of PPT primer generation and the features of the PPT sequence that are critical for its recognition by HIV-1 RT remain unclear. Here, we used a chemical cross-linking method together with molecular dynamics simulations and single-molecule assays to study the mechanism of PPT primer generation. We found that the PPT was specifically and properly recognized within covalently tethered HIV-1 RT–nucleic acid complexes. These findings indicated that recognition of the PPT occurs within a stable catalytic complex after its formation. We found that this unique recognition is based on two complementary elements that rely on the PPT sequence: RNase H sequence preference and incompatibility of the poly(rA/dT) tract of the PPT with the nucleic acid conformation that is required for RNase H cleavage. The latter results from rigidity of the poly(rA/dT) tract and leads to base-pair slippage of this sequence upon deformation into a catalytically relevant geometry. In summary, our results reveal an unexpected mechanism of PPT primer generation based on specific dynamic properties of the poly(rA/dT) segment and help advance our understanding of the mechanisms in viral RNA reverse transcription.



The cartilage-specific lectin C-type lectin domain family 3 member A (CLEC3A) enhances tissue plasminogen activator-mediated plasminogen activation [Protein Structure and Folding]

2018-01-05T00:06:09-08:00

C-type lectin domain family 3 member A (CLEC3A) is a poorly characterized protein belonging to the superfamily of C-type lectins. Its closest homologue tetranectin binds to the kringle 4 domain of plasminogen and enhances its association with tissue plasminogen activator (tPA) thereby enhancing plasmin production, but whether CLEC3A contributes to plasminogen activation is unknown. Here, we recombinantly expressed murine and human full-length CLEC3As as well as truncated forms of CLEC3A in HEK-293 Epstein-Barr nuclear antigen (EBNA) cells. We analyzed the structure of recombinant CLEC3A by SDS-PAGE and immunoblot, glycan analysis, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, size-exclusion chromatography, circular dichroism spectroscopy, and electron microscopy; compared the properties of the recombinant protein with those of CLEC3A extracted from cartilage; and investigated its tissue distribution and extracellular assembly by immunohistochemistry and immunofluorescence microscopy. We found that CLEC3A mainly occurs as a monomer, but also forms dimers and trimers, potentially via a coiled-coil α-helix. We also noted that CLEC3A can be modified with chondroitin/dermatan sulfate side chains and tends to oligomerize to form higher aggregates. We show that CLEC3A is present in resting, proliferating, and hypertrophic growth-plate cartilage and assembles into an extended extracellular network in cultures of rat chondrosarcoma cells. Further, we found that CLEC3A specifically binds to plasminogen and enhances tPA-mediated plasminogen activation. In summary, we have determined the structure, tissue distribution, and molecular function of the cartilage-specific lectin CLEC3A and show that CLEC3A binds to plasminogen and participates in tPA-mediated plasminogen activation.



Structural analyses of key features in the KANK1{middle dot}KIF21A complex yield mechanistic insights into the cross-talk between microtubules and the cell cortex [Signal Transduction]

2018-01-05T00:06:09-08:00

The cross-talk between dynamic microtubules and the cell cortex plays important roles in cell division, polarity, and migration. A critical adaptor that links the plus ends of microtubules with the cell cortex is the KANK N-terminal motif and ankyrin repeat domains 1 (KANK1)/kinesin family member 21A (KIF21A) complex. Genetic defects in these two proteins are associated with various cancers and developmental diseases, such as congenital fibrosis of the extraocular muscles type 1. However, the molecular mechanism governing the KANK1/KIF21A interaction and the role of the conserved ankyrin (ANK) repeats in this interaction are still unclear. In this study, we present the crystal structure of the KANK1·KIF21A complex at 2.1 Å resolution. The structure, together with biochemical studies, revealed that a five-helix-bundle–capping domain immediately preceding the ANK repeats of KANK1 forms a structural and functional supramodule with its ANK repeats in binding to an evolutionarily conserved peptide located in the middle of KIF21A. We also show that several missense mutations present in cancer patients are located at the interface of the KANK1·KIF21A complex and destabilize its formation. In conclusion, our study elucidates the molecular basis underlying the KANK1/KIF21A interaction and also provides possible mechanistic explanations for the diseases caused by mutations in KANK1 and KIF21A.



Receptor for advanced glycation end products mediates sepsis-triggered amyloid-{beta} accumulation, Tau phosphorylation, and cognitive impairment [Immunology]

2018-01-05T00:06:09-08:00

Patients recovering from sepsis have higher rates of CNS morbidities associated with long-lasting impairment of cognitive functions, including neurodegenerative diseases. However, the molecular etiology of these sepsis-induced impairments is unclear. Here, we investigated the role of the receptor for advanced glycation end products (RAGE) in neuroinflammation, neurodegeneration-associated changes, and cognitive dysfunction arising after sepsis recovery. Adult Wistar rats underwent cecal ligation and perforation (CLP), and serum and brain (hippocampus and prefrontal cortex) samples were obtained at days 1, 15, and 30 after the CLP. We examined these samples for systemic and brain inflammation; amyloid-β peptide (Aβ) and Ser-202–phosphorylated Tau (p-TauSer-202) levels; and RAGE, RAGE ligands, and RAGE intracellular signaling. Serum markers associated with the acute proinflammatory phase of sepsis (TNFα, IL-1β, and IL-6) rapidly increased and then progressively decreased during the 30-day period post-CLP, concomitant with a progressive increase in RAGE ligands (S100B, Nϵ-[carboxymethyl]lysine, HSP70, and HMGB1). In the brain, levels of RAGE and Toll-like receptor 4, glial fibrillary acidic protein and neuronal nitric-oxide synthase, and Aβ and p-TauSer-202 also increased during that time. Of note, intracerebral injection of RAGE antibody into the hippocampus at days 15, 17, and 19 post-CLP reduced Aβ and p-TauSer-202 accumulation, Akt/mechanistic target of rapamycin signaling, levels of ionized calcium-binding adapter molecule 1 and glial fibrillary acidic protein, and behavioral deficits associated with cognitive decline. These results indicate that brain RAGE is an essential factor in the pathogenesis of neurological disorders following acute systemic inflammation.



Involvement of G{beta}{gamma} subunits of Gi protein coupled with S1P receptor on multivesicular endosomes in F-actin formation and cargo sorting into exosomes [Signal Transduction]

2018-01-05T00:06:09-08:00

Exosomes play a critical role in cell-to-cell communication by delivering cargo molecules to recipient cells. However, the mechanism underlying the generation of the exosomal multivesicular endosome (MVE) is one of the mysteries in the field of endosome research. Although sphingolipid metabolites such as ceramide and sphingosine 1-phosphate (S1P) are known to play important roles in MVE formation and maturation, the detailed molecular mechanisms are still unclear. Here, we show that Rho family GTPases, including Cdc42 and Rac1, are constitutively activated on exosomal MVEs and are regulated by S1P signaling as measured by fluorescence resonance energy transfer (FRET)-based conformational changes. Moreover, we detected S1P signaling-induced filamentous actin (F-actin) formation. A selective inhibitor of Gβγ subunits, M119, strongly inhibited both F-actin formation on MVEs and cargo sorting into exosomal intralumenal vesicles of MVEs, both of which were fully rescued by the simultaneous expression of constitutively active Cdc42 and Rac1. Our results shed light on the mechanism underlying exosomal MVE maturation and inform the understanding of the physiological relevance of continuous activation of the S1P receptor and subsequent downstream G protein signaling to Gβγ subunits/Rho family GTPases-regulated F-actin formation on MVEs for cargo sorting into exosomal intralumenal vesicles.



Cell-surface phosphatidylserine regulates osteoclast precursor fusion [Developmental Biology]

2018-01-05T00:06:09-08:00

Bone-resorbing multinucleated osteoclasts that play a central role in the maintenance and repair of our bones are formed from bone marrow myeloid progenitor cells by a complex differentiation process that culminates in fusion of mononuclear osteoclast precursors. In this study, we uncoupled the cell fusion step from both pre-fusion stages of osteoclastogenic differentiation and the post-fusion expansion of the nascent fusion connections. We accumulated ready-to-fuse cells in the presence of the fusion inhibitor lysophosphatidylcholine and then removed the inhibitor to study synchronized cell fusion. We found that osteoclast fusion required the dendrocyte-expressed seven transmembrane protein (DC-STAMP)-dependent non-apoptotic exposure of phosphatidylserine at the surface of fusion-committed cells. Fusion also depended on extracellular annexins, phosphatidylserine-binding proteins, which, along with annexin-binding protein S100A4, regulated fusogenic activity of syncytin 1. Thus, in contrast to fusion processes mediated by a single protein, such as epithelial cell fusion in Caenorhabditis elegans, the cell fusion step in osteoclastogenesis is controlled by phosphatidylserine-regulated activity of several proteins.



JNK2 up-regulates hypoxia-inducible factors and contributes to hypoxia-induced erythropoiesis and pulmonary hypertension [Signal Transduction]

2018-01-05T00:06:09-08:00

The hypoxic response is a stress response triggered by low oxygen tension. Hypoxia-inducible factors (HIFs) play a prominent role in the pathobiology of hypoxia-associated conditions, including pulmonary hypertension (PH) and polycythemia. The c-Jun N-terminal protein kinase (JNK), a stress-activated protein kinase that consists of two ubiquitously expressed isoforms, JNK1 and JNK2, and a tissue-specific isoform, JNK3, has been shown to be activated by hypoxia. However, the physiological role of JNK1 and JNK2 in the hypoxic response remains elusive. Here, using genetic knockout cells and/or mice, we show that JNK2, but not JNK1, up-regulates the expression of HIF-1α and HIF-2α and contributes to hypoxia-induced PH and polycythemia. Knockout or silencing of JNK2, but not JNK1, prevented the accumulation of HIF-1α in hypoxia-treated cells. Loss of JNK2 resulted in a decrease in HIF-1α and HIF-2α mRNA levels under resting conditions and in response to hypoxia. Consequently, hypoxia-treated Jnk2−/− mice had reduced erythropoiesis and were less prone to polycythemia because of decreased expression of the HIF target gene erythropoietin (Epo). Jnk2−/− mice were also protected from hypoxia-induced PH, as indicated by lower right ventricular systolic pressure, a process that depends on HIF. Taken together, our results suggest that JNK2 is a positive regulator of HIFs and therefore may contribute to HIF-dependent pathologies.



Identification of phlebovirus and arenavirus RNA sequences that stall and repress the exoribonuclease XRN1 [Microbiology]

2018-01-05T00:06:09-08:00

Regulated mRNA decay plays a vital role in determining both the level and quality of cellular gene expression. Viral RNAs must successfully evade this host RNA decay machinery to establish a productive infection. One way for RNA viruses to accomplish this is to target the cellular exoribonuclease XRN1, because this enzyme is accessible in the cytoplasm and plays a major role in mRNA decay. Members of the Flaviviridae use RNA structures in their 5′- or 3′-untranslated regions to stall and repress XRN1, effectively stabilizing viral RNAs while also causing significant dysregulation of host cell mRNA stability. Here, we use a series of biochemical assays to demonstrate that the 3′-terminal portion of the nucleocapsid (N) mRNA of Rift Valley fever virus, a phlebovirus of the Bunyaviridae family, also can effectively stall and repress XRN1. The region responsible for impeding XRN1 includes a G-rich portion that likely forms a G-quadruplex structure. The 3′-terminal portions of ambisense-derived transcripts of multiple arenaviruses also stalled XRN1. Therefore, we conclude that RNAs from two additional families of mammalian RNA viruses stall and repress XRN1. This observation. emphasizes the importance and commonality of this viral strategy to interfere with the 5′-to-3′-exoribonuclease component of the cytoplasmic RNA decay machinery



Methamphetamine increases HIV infectivity in neural progenitor cells [Neurobiology]

2018-01-05T00:06:09-08:00

HIV-1 infection and methamphetamine (METH) abuse frequently occur simultaneously and may have synergistic pathological effects. Although HIV-positive/active METH users have been shown to have higher HIV viral loads and experience more severe neurological complications than non-users, the direct impact of METH on HIV infection and its link to the development of neurocognitive alternations are still poorly understood. In the present study, we hypothesized that METH impacts HIV infection of neural progenitor cells (NPCs) by a mechanism encompassing NFκB/SP1-mediated HIV LTR activation. Mouse and human NPCs were infected with EcoHIV (modified HIV virus infectious to mice) and HIV, respectively, in the presence or absence of METH (50 or 100 μm). Pretreatment with METH, but not simultaneous exposure, significantly increased HIV production in both mouse and human NPCs. To determine the mechanisms underlying these effects, cells were transfected with different variants of HIV LTR promoters and then exposed to METH. METH treatment induced transcriptional activity of the HIV LTR promotor, an effect that required both NFκB and SP1 signaling. Pretreatment with METH also decreased neuronal differentiation of HIV-infected NPCs in both in vitro and in vivo settings. Importantly, NPC-derived daughter cells appeared to be latently infected with HIV. This study indicates that METH increases HIV infectivity of NPCs, through the NFκB/SP1-dependent activation of the HIV LTR and with the subsequent alterations of NPC neurogenesis. Such events may underlie METH- exacerbated neurocognitive dysfunction in HIV-infected patients.



UbiA prenyltransferase domain-containing protein-1 modulates HMG-CoA reductase degradation to coordinate synthesis of sterol and nonsterol isoprenoids [Protein Synthesis and Degradation]

2018-01-05T00:06:09-08:00

UBIAD1 (UbiA prenyltransferase domain–containing protein-1) utilizes geranylgeranyl pyrophosphate (GGpp) to synthesize vitamin K2. We previously reported that sterols stimulate binding of UBIAD1 to endoplasmic reticulum (ER)–localized 3-hydroxy-3-methylglutaryl (HMG) CoA reductase. UBIAD1 binding inhibits sterol-accelerated, ER-associated degradation (ERAD) of reductase, one of several mechanisms for feedback control of this rate-limiting enzyme in the branched pathway that produces cholesterol and nonsterol isoprenoids such as GGpp. Accumulation of GGpp in ER membranes triggers release of UBIAD1 from reductase, permitting its maximal ERAD and ER-to-Golgi transport of UBIAD1. Mutant UBIAD1 variants associated with Schnyder corneal dystrophy (SCD), a human disorder characterized by corneal accumulation of cholesterol, resist GGpp-induced release from reductase and remain sequestered in the ER to block reductase ERAD. Using lines of genetically manipulated cells, we now examine consequences of UBIAD1 deficiency and SCD-associated UBIAD1 on reductase ERAD and cholesterol synthesis. Our results indicated that reductase becomes destabilized in the absence of UBIAD1, resulting in reduced cholesterol synthesis and intracellular accumulation. In contrast, an SCD-associated UBIAD1 variant inhibited reductase ERAD, thereby stabilizing the enzyme and contributing to enhanced synthesis and intracellular accumulation of cholesterol. Finally, we present evidence that GGpp-regulated, ER-to-Golgi transport enables UBIAD1 to modulate reductase ERAD such that synthesis of nonsterol isoprenoids is maintained in sterol-replete cells. These findings further establish UBIAD1 as a central player in the reductase ERAD pathway and regulation of isoprenoid synthesis. They also indicate that UBIAD1-mediated inhibition of reductase ERAD underlies cholesterol accumulation associated with SCD.



Co(II) and Ni(II) binding of the Escherichia coli transcriptional repressor RcnR orders its N terminus, alters helix dynamics, and reduces DNA affinity [Gene Regulation]

2018-01-05T00:06:09-08:00

RcnR, a transcriptional regulator in Escherichia coli, derepresses the expression of the export proteins RcnAB upon binding Ni(II) or Co(II). Lack of structural information has precluded elucidation of the allosteric basis for the decreased DNA affinity in RcnR's metal-bound states. Here, using hydrogen–deuterium exchange coupled with MS (HDX-MS), we probed the RcnR structure in the presence of DNA, the cognate metal ions Ni(II) and Co(II), or the noncognate metal ion Zn(II). We found that cognate metal binding altered flexibility from the N terminus through helix 1 and modulated the RcnR–DNA interaction. Apo–RcnR and RcnR–DNA complexes and the Zn(II)–RcnR complex exhibited similar 2H uptake kinetics, with fast-exchanging segments located in the N terminus, in helix 1 (residues 14–24), and at the C terminus. The largest difference in 2H incorporation between apo- and Ni(II)- and Co(II)-bound RcnR was observed in helix 1, which contains the N terminus and His-3, and has been associated with cognate metal binding. 2H uptake in helix 1 was suppressed in the Ni(II)- and Co(II)-bound RcnR complexes, in particular in the peptide corresponding to residues 14–24, containing Arg-14 and Lys-17. Substitution of these two residues drastically affected DNA-binding affinity, resulting in rcnA expression in the absence of metal. Our results suggest that cognate metal binding to RcnR orders its N terminus, decreases helix 1 flexibility, and induces conformational changes that restrict DNA interactions with the positively charged residues Arg-14 and Lys-17. These metal-induced alterations decrease RcnR–DNA binding affinity, leading to rcnAB expression.



Interaction of the phosphorylated DNA-binding domain in nuclear receptor CAR with its ligand-binding domain regulates CAR activation [Signal Transduction]

2018-01-05T00:06:09-08:00

The nuclear protein constitutive active/androstane receptor (CAR or NR1I3) regulates several liver functions such as drug and energy metabolism and cell growth or death, which are often involved in the development of diseases such as diabetes and hepatocellular carcinoma. CAR undergoes a conversion from inactive homodimers to active heterodimers with retinoid X receptor α (RXRα), and phosphorylation of the DNA-binding domain (DBD) at Thr-38 in CAR regulates this conversion. Here, we uncovered the molecular mechanism by which this phosphorylation regulates the intramolecular interaction between CAR's DBD and ligand-binding domain (LBD), enabling the homodimer–heterodimer conversion. Phosphomimetic substitution of Thr-38 with Asp increased co-immunoprecipitation of the CAR DBD with CAR LBD in Huh-7 cells. Isothermal titration calorimetry assays also revealed that recombinant CAR DBD-T38D, but not nonphosphorylated CAR DBD, bound the CAR LBD peptide. This DBD–LBD interaction masked CAR's dimer interface, preventing CAR homodimer formation. Of note, EGF signaling weakened the interaction of CAR DBD T38D with CAR LBD, converting CAR to the homodimer form. The DBD-T38D–LBD interaction also prevented CAR from forming a heterodimer with RXRα. However, this interaction opened up a CAR surface, allowing interaction with protein phosphatase 2A. Thr-38 dephosphorylation then dissociated the DBD–LBD interaction, allowing CAR heterodimer formation with RXRα. We conclude that the intramolecular interaction of phosphorylated DBD with the LBD enables CAR to adapt a transient monomer configuration that can be converted to either the inactive homodimer or the active heterodimer.



Munc13 proteins control regulated exocytosis in mast cells [Immunology]

2018-01-05T00:06:09-08:00

Mast cells (MCs) are involved in host defenses against pathogens and inflammation. Stimulated MCs release substances stored in their granules via regulated exocytosis. In other cell types, Munc13 (mammalian homolog of Caenorhabditis elegans uncoordinated gene 13) proteins play essential roles in regulated exocytosis. Here, we found that MCs express Munc13-2 and -4, and we studied their roles using global and conditional knock-out (KO) mice. In a model of systemic anaphylaxis, we found no difference between WT and Munc13-2 KO mice, but global and MC-specific Munc13-4 KO mice developed less hypothermia. This protection correlated with lower plasma histamine levels and with histological evidence of defective MC degranulation but not with changes in MC development, distribution, numbers, or morphology. In vitro assays revealed that the defective response in Munc13-4-deficient MCs was limited to regulated exocytosis, leaving other MC secretory effector responses intact. Single cell capacitance measurements in MCs from mouse mutants differing in Munc13-4 expression levels in their MCs revealed that as levels of Munc13-4 decrease, the rate of exocytosis declines first, and then the total amount of exocytosis decreases. A requirement for Munc13-2 in MC exocytosis was revealed only in the absence of Munc13-4. Electrophysiology and EM studies uncovered that the number of multigranular compound events (i.e. granule-to-granule homotypic fusion) was severely reduced in the absence of Munc13-4. We conclude that although Munc13-2 plays a minor role, Munc13-4 is essential for regulated exocytosis in MCs, and that this MC effector response is required for a full anaphylactic response.



The antiapoptotic protein HAX-1 mediates half of phospholamban's inhibitory activity on calcium cycling and contractility in the heart [Cell Biology]

2018-01-05T00:06:09-08:00

The antiapoptotic protein HAX-1 (HS-associated protein X-1) localizes to sarcoplasmic reticulum (SR) in the heart and interacts with the small membrane protein phospholamban (PLN), inhibiting the cardiac sarco/endoplasmic reticulum calcium ATPase 2a (SERCA2a) in the regulation of overall calcium handling and heart muscle contractility. However, because global HAX-1 deletion causes early lethality, how much endogenous HAX-1 contributes to PLN's inhibitory activity on calcium cycling is unknown. We therefore generated a cardiac-specific and inducible knock-out mouse model. HAX-1 ablation in the adult heart significantly increased contractile parameters and calcium kinetics, associated with increased SR calcium load. These changes occurred without any changes in the protein expression of SERCA2a, PLN, and ryanodine receptor or in the PLN phosphorylation status. The enhanced calcium cycling in the HAX-1–depleted heart was mediated through increases in the calcium affinity of SERCA2a and reduced PLN–SERCA2a binding. Comparison of the HAX-1 deletion–induced stimulatory effects with those elicited by PLN ablation indicated that HAX-1 mediates ∼50% of the PLN-associated inhibitory effects in the heart. Stimulation with the inotropic and lusitropic agent isoproterenol eliminated the differences among wild-type, HAX-1–deficient, and PLN–deficient hearts, and maximally stimulated contractile and calcium kinetic parameters were similar among these three groups. Furthermore, PLN overexpression in the HAX-1–null cardiomyocytes did not elicit any inhibitory effects, indicating that HAX-1 may limit PLN activity. These findings suggest that HAX-1 is a major mediator of PLN's inhibitory activity and a critical gatekeeper of SR calcium cycling and contractility in the heart.



Mass spectrometric revival of an l-rhamnose- and d-galactose-specific lectin from a lost strain of Streptomyces [Genomics and Proteomics]

2018-01-05T00:06:09-08:00

Blood type B-specific Streptomyces sp. 27S5 hemagglutinin (SHA) was discovered and characterized in the 1970s. Although strain 27S5 has been lost, the purified SHA protein survived intact under frozen conditions and retained its activity. Using modern techniques, here we further characterized SHA. Fourier-transform ion cyclotron resonance MS analysis determined the average molecular mass of SHA as 13,314.67 Da. MS of digested SHA peptides, Streptomyces genomic database matching, and N-terminal sequencing solved the 131-residue amino acid sequence of SHA. We found that SHA is homologous to N-terminally truncated hypothetical proteins encoded by the genomes of Streptomyces lavendulae, Streptomyces sp. Mg1, and others. The gene of the closest homologue in S. lavendulae, a putative polysaccharide deacetylase (PDSL), encodes 68 additional N-terminal amino acids, and its C terminus perfectly matched the SHA sequence, except for a single Ala-to-Glu amino acid difference. We expressed recombinant SHA(PDSL-A108E) (rSHA) as an enzymatically cleavable fusion protein in Escherichia coli, and glycan microarray analyses indicated that refolded rSHA exhibits the blood type B– and l-rhamnose–specific characteristics of authentic SHA, confirming that rSHA is essentially identical with SHA produced by Streptomyces sp. 27S5. We noted that SHA comprises three similar domains, representing 70% of the protein, and that these SHA domains partially overlap with annotated clostridial hydrophobic with conserved W domains. Furthermore, examination of GFP-tagged SHA revealed binding to microbial surfaces. rSHA may be useful both for studying the role of SHA/clostridial hydrophobic with conserved W domains in carbohydrate binding and for developing novel diagnostics an[...]



Expanding the chondroitin glycoproteome of Caenorhabditis elegans [Glycobiology and Extracellular Matrices]

2018-01-05T00:06:09-08:00

Chondroitin sulfate proteoglycans (CSPGs) are important structural components of connective tissues in essentially all metazoan organisms. In vertebrates, CSPGs are involved also in more specialized processes such as neurogenesis and growth factor signaling. In invertebrates, however, knowledge of CSPGs core proteins and proteoglycan-related functions is relatively limited, even for Caenorhabditis elegans. This nematode produces large amounts of non-sulfated chondroitin in addition to low-sulfated chondroitin sulfate chains. So far, only nine core proteins (CPGs) have been identified, some of which have been shown to be involved in extracellular matrix formation. We recently introduced a protocol to characterize proteoglycan core proteins by identifying CS-glycopeptides with a combination of biochemical enrichment, enzymatic digestion, and nano-scale liquid chromatography MS/MS analysis. Here, we have used this protocol to map the chondroitin glycoproteome in C. elegans, resulting in the identification of 15 novel CPG proteins in addition to the nine previously established. Three of the newly identified CPGs displayed homology to vertebrate proteins. Bioinformatics analysis of the primary protein sequences revealed that the CPG proteins altogether contained 19 unique functional domains, including Kunitz and endostatin domains, suggesting direct involvement in protease inhibition and axonal migration, respectively. The analysis of the core protein domain organization revealed that all chondroitin attachment sites are located in unstructured regions. Our results suggest that CPGs display a much greater functional and structural heterogeneity than previously appreciated and indicate that specialized proteoglycan-mediated[...]



Structure-function characterization of three human antibodies targeting the vaccinia virus adhesion molecule D8 [Protein Structure and Folding]

2018-01-05T00:06:09-08:00

Vaccinia virus (VACV) envelope protein D8 is one of three glycosaminoglycan adhesion molecules and binds to the linear polysaccharide chondroitin sulfate (CS). D8 is also a target for neutralizing antibody responses that are elicited by the smallpox vaccine, which has enabled the first eradication of a human viral pathogen and is a useful model for studying antibody responses. However, to date, VACV epitopes targeted by human antibodies have not been characterized at atomic resolution. Here, we characterized the binding properties of several human anti-D8 antibodies and determined the crystal structures of three VACV-mAb variants, VACV-66, VACV-138, and VACV-304, separately bound to D8. Although all these antibodies bound D8 with high affinity and were moderately neutralizing in the presence of complement, VACV-138 and VACV-304 also fully blocked D8 binding to CS-A, the low affinity ligand for D8. VACV-138 also abrogated D8 binding to the high-affinity ligand CS-E, but we observed residual CS-E binding was observed in the presence of VACV-304. Analysis of the VACV-138– and VACV-304–binding sites along the CS-binding crevice of D8, combined with different efficiencies of blocking D8 adhesion to CS-A and CS-E allowed us to propose that D8 has a high- and low-affinity CS-binding region within its central crevice. The crevice is amenable to protein engineering to further enhance both specificity and affinity of binding to CS-E. Finally, a wild-type D8 tetramer specifically bound to structures within the developing glomeruli of the kidney, which express CS-E. We propose that through structure-based protein engineering, an improved D8 tetramer could be used as a potential diagnostic tool to de[...]



Metal selectivity determinants in a family of transition metal transporters. [Additions and Corrections]

2018-01-05T00:06:09-08:00

VOLUME 287 (2012) PAGES 3185–3196PAGES 3192 and 3193:In Fig. 5A, the control image and the cobalt image in the yeast complementation assay for the T208A site-directed mutant was inadvertently replicated for the H212 mutant. Additionally, an incorrect image was used for the control in the yeast complementation assay for the I135F site-directed mutant in Figs. 5A and 6. These errors have now been corrected and do not affect the results or conclusions of this work.jbc;293/1/402/FU1F1FU1jbc;293/1/402/FU2F2FU2



Heparin-dependent aggregation of hen egg white lysozyme reveals two distinct mechanisms of amyloid fibrillation [Protein Structure and Folding]

2017-12-29T05:01:18-08:00

Heparin, a biopolymer possessing high negative charge density, is known to accelerate amyloid fibrillation by various proteins. Using hen egg white lysozyme, we studied the effects of heparin on protein aggregation at low pH, raised temperature, and applied ultrasonic irradiation, conditions under which amyloid fibrillation was promoted. Heparin exhibited complex bimodal concentration-dependent effects, either accelerating or inhibiting fibrillation at pH 2.0 and 60 °C. At concentrations lower than 20 μg/ml, heparin accelerated fibrillation through transient formation of hetero-oligomeric aggregates. Between 0.1 and 10 mg/ml, heparin rapidly induced amorphous heteroaggregation with little to no accompanying fibril formation. Above 10 mg/ml, heparin again induced fibrillation after a long lag time preceded by oligomeric aggregate formation. Compared with studies performed using monovalent and divalent anions, the results suggest two distinct mechanisms of heparin-induced fibrillation. At low heparin concentrations, initial hen egg white lysozyme cluster formation and subsequent fibrillation is promoted by counter ion binding and screening of repulsive charges. At high heparin concentrations, fibrillation is caused by a combination of salting out and macromolecular crowding effects probably independent of protein net charge. Both fibrillation mechanisms compete against amorphous aggregation, producing a complex heparin concentration–dependent phase diagram. Moreover, the results suggest an active role for amorphous oligomeric aggregates in triggering fibrillation, whereby breakdown of supersaturation takes place through heterogeneous n[...]



Loss of the mucosal barrier alters the progenitor cell niche via Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling [Developmental Biology]

2017-12-29T05:01:18-08:00

The mucous barrier of our digestive tract is the first line of defense against pathogens and damage. Disruptions in this barrier are associated with diseases such as Crohn's disease, colitis, and colon cancer, but mechanistic insights into these processes and diseases are limited. We have previously shown that loss of a conserved O-glycosyltransferase (PGANT4) in Drosophila results in aberrant secretion of components of the peritrophic/mucous membrane in the larval digestive tract. Here, we show that loss of PGANT4 disrupts the mucosal barrier, resulting in epithelial expression of the IL-6–like cytokine Upd3, leading to activation of JAK/STAT signaling, differentiation of cells that form the progenitor cell niche, and abnormal proliferation of progenitor cells. This niche disruption could be recapitulated by overexpressing upd3 and rescued by deleting upd3, highlighting a crucial role for this cytokine. Moreover, niche integrity and cell proliferation in pgant4-deficient animals could be rescued by overexpression of the conserved cargo receptor Tango1 and partially rescued by supplementation with exogenous mucins or treatment with antibiotics. Our findings help elucidate the paracrine signaling events activated by a compromised mucosal barrier and provide a novel in vivo screening platform for mucin mimetics and other strategies to treat diseases of the oral mucosa and digestive tract.



The anti-inflammatory activity of curcumin is mediated by its oxidative metabolites [Enzymology]

2017-12-29T05:01:18-08:00

The spice turmeric, with its active polyphenol curcumin, has been used as anti-inflammatory remedy in traditional Asian medicine for centuries. Many cellular targets of curcumin have been identified, but how such a wide range of targets can be affected by a single compound is unclear. Here, we identified curcumin as a pro-drug that requires oxidative activation into reactive metabolites to exert anti-inflammatory activities. Synthetic curcumin analogs that undergo oxidative transformation potently inhibited the pro-inflammatory transcription factor nuclear factor κB (NF-κB), whereas stable, non-oxidizable analogs were less active, with a correlation coefficient (R2) of IC50 versus log of autoxidation rate of 0.75. Inhibition of glutathione biosynthesis, which protects cells from reactive metabolites, increased the potency of curcumin and decreased the amount of curcumin-glutathione adducts in cells. Oxidative metabolites of curcumin adducted to and inhibited the inhibitor of NF-κB kinase subunit β (IKKβ), an activating kinase upstream of NF-κB. An unstable, alkynyl-tagged curcumin analog yielded abundant adducts with cellular protein that were decreased by pretreatment with curcumin or an unstable analog but not by a stable analog. Bioactivation of curcumin occurred readily in vitro, which may explain the wide range of cellular targets, but if bioactivation is insufficient in vivo, it may also help explain the inconclusive results in human studies with curcumin so far. We conclude that the paradigm of metabolic bioactivation uncovered here should be considered for the evaluation[...]



N-Ethylmaleimide increases KCC2 cotransporter activity by modulating transporter phosphorylation [Neurobiology]

2017-12-29T05:01:18-08:00

K+/Cl− cotransporter 2 (KCC2) is selectively expressed in the adult nervous system and allows neurons to maintain low intracellular Cl− levels. Thus, KCC2 activity is an essential prerequisite for fast hyperpolarizing synaptic inhibition mediated by type A γ-aminobutyric acid (GABAA) receptors, which are Cl−-permeable, ligand-gated ion channels. Consistent with this, deficits in the activity of KCC2 lead to epilepsy and are also implicated in neurodevelopmental disorders, neuropathic pain, and schizophrenia. Accordingly, there is significant interest in developing activators of KCC2 as therapeutic agents. To provide insights into the cellular processes that determine KCC2 activity, we have investigated the mechanism by which N-ethylmaleimide (NEM) enhances transporter activity using a combination of biochemical and electrophysiological approaches. Our results revealed that, within 15 min, NEM increased cell surface levels of KCC2 and modulated the phosphorylation of key regulatory residues within the large cytoplasmic domain of KCC2 in neurons. More specifically, NEM increased the phosphorylation of serine 940 (Ser-940), whereas it decreased phosphorylation of threonine 1007 (Thr-1007). NEM also reduced with no lysine (WNK) kinase phosphorylation of Ste20-related proline/alanine-rich kinase (SPAK), a kinase that directly phosphorylates KCC2 at residue Thr-1007. Mutational analysis revealed that Thr-1007 dephosphorylation mediated the effects of NEM on KCC2 activity. Collectively, our results suggest that compounds that either increase the surface sta[...]



MicroRNA-874-mediated inhibition of the maȷor G1/S phase cyclin, CCNE1, is lost in osteosarcomas [RNA]

2017-12-29T05:01:18-08:00

The tumor microenvironment is characterized by nutrient-deprived conditions in which the cancer cells have to adapt for survival. Serum starvation resembles the growth factor deprivation characteristic of the poorly vascularized tumor microenvironment and has aided in the discovery of key growth regulatory genes and microRNAs (miRNAs) that have a role in the oncogenic transformation. We report here that miR-874 down-regulates the major G1/S phase cyclin, cyclin E1 (CCNE1), during serum starvation. Because the adaptation of cancer cells to the tumor microenvironment is vital for subsequent oncogenesis, we tested for miR-874 and CCNE1 interdependence in osteosarcoma cells. We observed that miR-874 inhibits CCNE1 expression in primary osteoblasts, but in aggressive osteosarcomas, miR-874 is down-regulated, leading to elevated CCNE1 expression and appearance of cancer-associated phenotypes. We established that loss of miR-874–mediated control of cyclin E1 is a general feature of osteosarcomas. The down-regulation of CCNE1 by miR-874 is independent of E2F transcription factors. Restoration of miR-874 expression impeded S phase progression, suppressing aggressive growth phenotypes, such as cell invasion, migration, and xenograft tumors, in nude mice. In summary, we report that miR-874 inhibits CCNE1 expression during growth factor deprivation and that miR-874 down-regulation in osteosarcomas leads to CCNE1 up-regulation and more aggressive growth phenotypes.



Functional analyses of a human vascular tumor FOS variant identify a novel degradation mechanism and a link to tumorigenesis [Protein Synthesis and Degradation]

2017-12-29T05:01:18-08:00

Epithelioid hemangioma is a locally aggressive vascular neoplasm, found in bones and soft tissue, whose cause is currently unknown, but may involve oncogene activation. FOS is one of the earliest viral oncogenes to be characterized, and normal cellular FOS forms part of the activator protein 1 (AP-1) transcription factor complex, which plays a pivotal role in cell growth, differentiation, and survival as well as the DNA damage response. Despite this, a causal link between aberrant FOS function and naturally occurring tumors has not yet been established. Here, we describe a thorough molecular and biochemical analysis of a mutant FOS protein we identified in these vascular tumors. The mutant protein lacks a highly conserved helix consisting of the C-terminal four amino acids of FOS, which we show is indispensable for fast, ubiquitin-independent FOS degradation via the 20S proteasome. Our work reveals that FOS stimulates endothelial sprouting and that perturbation of normal FOS degradation could account for the abnormal vessel growth typical of epithelioid hemangioma. To the best of our knowledge, this is the first functional characterization of mutant FOS proteins found in tumors.



MicroRNA-302a suppresses influenza A virus-stimulated interferon regulatory factor-5 expression and cytokine storm induction [Immunology]

2017-12-29T05:01:18-08:00

During influenza A virus (IAV) infection, cytokine storms play a vital and critical role in clinical outcomes. We have previously reported that microRNA (miR)-302c regulates IAV-induced IFN expression by targeting the 3′-UTR of nuclear factor κB (NF-κB)–inducing kinase. In the current study, we found that miR-302a, another member of the miR-302 cluster, controls the IAV-induced cytokine storm. According to results from cell-based and knockout mouse models, IAV induces a cytokine storm via interferon regulatory factor-5 (IRF-5). We also found that IAV infection up-regulates IRF-5 expression and that IRF-5 in turn promotes IAV replication. Furthermore, we observed that IRF-5 is a direct target of miR-302a, which down-regulated IRF-5 expression by binding its 3′-UTR. Moreover, IAV increased IRF-5 expression by down-regulating miR-302a expression. Interestingly, miR-302a inhibited IAV replication. In IAV-infected patients, miR-302a expression was down-regulated, whereas IRF-5 expression was up-regulated. Taken together, our work uncovers and defines a signaling pathway implicated in an IAV-induced cytokine storm.



The small molecule luteolin inhibits N-acetyl-{alpha}-galactosaminyltransferases and reduces mucin-type O-glycosylation of amyloid precursor protein [Enzymology]

2017-12-29T05:01:18-08:00

Mucin-type O-glycosylation is the most abundant type of O-glycosylation. It is initiated by the members of the polypeptide N-acetyl-α-galactosaminyltransferase (ppGalNAc-T) family and closely associated with both physiological and pathological conditions, such as coronary artery disease or Alzheimer's disease. The lack of direct and selective inhibitors of ppGalNAc-Ts has largely impeded research progress in understanding the molecular events in mucin-type O-glycosylation. Here, we report that a small molecule, the plant flavonoid luteolin, selectively inhibits ppGalNAc-Ts in vitro and in cells. We found that luteolin inhibits ppGalNAc-T2 in a peptide/protein-competitive manner but not promiscuously (e.g. via aggregation-based activity). X-ray structural analysis revealed that luteolin binds to the PXP motif–binding site found in most protein substrates, which was further validated by comparing the interactions of luteolin with wild-type enzyme and with mutants using 1H NMR–based binding experiments. Functional studies disclosed that luteolin at least partially reduced production of β-amyloid protein by selectively inhibiting the activity of ppGalNAc-T isoforms. In conclusion, our study provides key structural and functional details on luteolin inhibiting ppGalNAc-T activity, opening up the way for further optimization of more potent and specific ppGalNAc-T inhibitors. Moreover, our findings may inform future investigations into site-specific O[...]



Structural features of the TatC membrane protein that determine docking and insertion of a twin-arginine signal peptide [Microbiology]

2017-12-29T05:01:18-08:00

Twin-arginine translocation (Tat) systems transport folded proteins across cellular membranes with the concerted action of mostly three membrane proteins: TatA, TatB, and TatC. Hetero-oligomers of TatB and TatC form circular substrate–receptor complexes with a central binding cavity for twin-arginine–containing signal peptides. After binding of the substrate, energy from an electro-chemical proton gradient is transduced into the recruitment of TatA oligomers and into the actual translocation event. We previously reported that Tat-dependent protein translocation into membrane vesicles of Escherichia coli is blocked by the compound N,N′-dicyclohexylcarbodiimide (DCCD, DCC). We have now identified a highly conserved glutamate residue in the transmembrane region of E. coli TatC, which when modified by DCCD interferes with the deep insertion of a Tat signal peptide into the TatBC receptor complex. Our findings are consistent with a hydrophobic binding cavity formed by TatB and TatC inside the lipid bilayer. Moreover, we found that DCCD mediates discrete intramolecular cross-links of E. coli TatC involving both its N- and C-tails. These results confirm the close proximity of two distant sequence sections of TatC proposed to concertedly function as the primary docking site for twin-arginine signal peptides.



Conformational memory in the association of the transmembrane protein phospholamban with the sarcoplasmic reticulum calcium pump SERCA [Membrane Biology]

2017-12-29T05:01:18-08:00

The sarcoplasmic reticulum Ca2+-ATPase SERCA promotes muscle relaxation by pumping calcium ions from the cytoplasm into the sarcoplasmic reticulum. SERCA activity is regulated by a variety of small transmembrane peptides, most notably by phospholamban in cardiac muscle and sarcolipin in skeletal muscle. However, how phospholamban and sarcolipin regulate SERCA is not fully understood. In the present study, we evaluated the effects of phospholamban and sarcolipin on calcium translocation and ATP hydrolysis by SERCA under conditions that mimic environments in sarcoplasmic reticulum membranes. For pre-steady-state current measurements, proteoliposomes containing SERCA and phospholamban or sarcolipin were adsorbed to a solid-supported membrane and activated by substrate concentration jumps. We observed that phospholamban altered ATP-dependent calcium translocation by SERCA within the first transport cycle, whereas sarcolipin did not. Using pre-steady-state charge (calcium) translocation and steady-state ATPase activity under substrate conditions (various calcium and/or ATP concentrations) promoting particular conformational states of SERCA, we found that the effect of phospholamban on SERCA depends on substrate preincubation conditions. Our results also indicated that phospholamban can establish an inhibitory interaction with multiple SERCA conformational states with distinct effects on SERCA's kineti[...]



Mevalonate 5-diphosphate mediates ATP binding to the mevalonate diphosphate decarboxylase from the bacterial pathogen Enterococcus faecalis [Enzymology]

2017-12-29T05:01:18-08:00

The mevalonate pathway produces isopentenyl diphosphate (IPP), a building block for polyisoprenoid synthesis, and is a crucial pathway for growth of the human bacterial pathogen Enterococcus faecalis. The final enzyme in this pathway, mevalonate diphosphate decarboxylase (MDD), acts on mevalonate diphosphate (MVAPP) to produce IPP while consuming ATP. This essential enzyme has been suggested as a therapeutic target for the treatment of drug-resistant bacterial infections. Here, we report functional and structural studies on the mevalonate diphosphate decarboxylase from E. faecalis (MDDEF). The MDDEF crystal structure in complex with ATP (MDDEF–ATP) revealed that the phosphate-binding loop (amino acids 97–105) is not involved in ATP binding and that the phosphate tail of ATP in this structure is in an outward-facing position pointing away from the active site. This suggested that binding of MDDEF to MVAPP is necessary to guide ATP into a catalytically favorable position. Enzymology experiments show that the MDDEF performs a sequential ordered bi-substrate reaction with MVAPP as the first substrate, consistent with the isothermal titration calorimetry (ITC) experiments. On the basis of ITC results, we propose that this initial prerequisite binding of MVAPP enhances ATP binding. In summary, our findings reveal a substrate-induced substrate-binding event that occurs dur[...]