Subscribe: Positive Technology Journal
http://gaggio.blogspirit.com/index.rss
Added By: Feedage Forager Feedage Grade B rated
Language: English
Tags:
awe  brain  children  pain  positive  potential  reality  research  science  scientific  technology  virtual reality  virtual 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: Positive Technology Journal

Positive Technology Journal



Mind, brain, and emerging technologies - By Andrea Gaggioli, Ph.D



Last Build Date: Sun, 22 Oct 2017 22:40:30 +0200

Copyright: All Rights Reserved
 



New Frontiers research topic on Positive Technology (Manuscript submission: 28 Feb 2018)

Tue, 16 May 2017 13:09:00 +0200

We are very excited to present this new Frontiers research topic on Positive Technology

Frontiers in Psychology is the #1 largest and the #2 most cited psychology journal in the world. Impact Factor: 2.463 (as accessed May 2017)

Submission Deadlines

30 September 2017 -> Abstract

28 February 2018 -> Manuscript

We look forward to receive your contribution!

(image)

About this Research Topic

In recent years, there has been a growing interest in the potential role that digital technologies can play in promoting well-being. Smartphones, wearable devices, virtual/augmented reality, social media, and the internet provide a wealth of useful tools and resources to support psychological interventions that facilitate positive emotions, resilience, personal growth, creativity, and social connectedness.

Understanding the full extent of this potential, however, requires an interdisciplinary approach that integrates the scientific principles of well-being into the design of e-experiences that foster positive change. Positive Technology is an emergent field within human-computer interaction that seeks to understand how interactive technologies can be used in evidence-based well-being interventions. It’s focus of analysis is two-fold: at the theoretical level, Positive Technology aims to develop conceptual frameworks and models for understanding how computers can be effectively used to help individuals achieve greater well-being.

At the methodological and applied level, Positive Technology is concerned with the design, development, and validation of digital experiences that promote positive change through pleasure, flow, meaning, competence, and positive relationships.

This Research Topic aims to explore the potential of interactive technology for well-being applications by focusing on the following issues:
- methodological issues in designing and evaluating positive technologies;
- technology-based strategies for promoting positive emotions and fostering eudaimonic and self-actualizing experiences;
- computer-based applications in stress prevention, monitoring, and management;
- online positive interventions;
- interactive technologies and positive change;
- digital tools & strategies for enhancing individual and team creativity;
- videogames and serious games for mental health prevention and promotion;
- technology and spirituality;
- positive technologies for healthy ageing;
- technology-based interventions to promote life skills and social connectedness;
- self-help applications to learn affective regulation strategies (at their multiple levels: e.g., interpersonal, intrapersonal; automatic, explicit; covert, overt).

Keywords: human-media interaction, positive psychology interventions, cyberpsychology, mental health




New ResearchGate Project on Positive Technology

Tue, 11 Apr 2017 16:09:01 +0200

I have created a new project in ResearchGate for those of you who are interested to get the latest updates in PT research (including full-text access to most of our papers):

https://www.researchgate.net/project/Positive-Technology-Designing-digital-e-experiences-for-positive-personal-change

It is also a useful tool to explore scientific collaboration opportunities, so if you find anything that matches your interests please let us know!

 

 



Crowdsourcing VR research

Thu, 06 Apr 2017 09:41:00 +0200

If 2016 has been a golden year for virtual reality, there is reason to believe that the coming year may be even better. According to a recent market forecast by International Data Corporation (IDC), worldwide revenues for the augmented reality and virtual reality market are projected to grow from $5.2 billion in 2016 to more than $162 billion in 2020.With virtual reality becoming a mass product, it becomes crucial to understand its psychological effects on users.Over the last decade, a growing body of research has been addressing the positive and negative implications of virtual experience for the human mind. Yet many questions still remain unanswered.Some of these issues are concerned with the defining features of virtual experience, i.e., what it means to be “present” in a computer-simulated reality. Other questions regard the drawbacks of virtual environments, such as cybersickness, addiction and other psychological disorders caused by prolonged exposure to immersive virtual worlds.For example, in a recent article appeared in The Atlantic, Rebecca Searles wrote that after exploring a virtual environment, some users have reported a feeling of detachment that can last days or even weeks. This effect had been already documented by Frederick Aardema and colleagues in the journal Cyberpsychology, Behavior, and Social Networking some years ago. The team administered a nonclinical sample questionnaires to measures dissociation, sense of presence, and immersion before and after an immersion in a virtual environment. Findings showed that after explosure to virtual reality, participants reported an increase in dissociative experience (depersonalization and derealization), including a lessened sense of presence in objective reality.However, more research is needed to understand this phenomenon, and other aspects of virtual experience that are still to be uncovered.Until today, most studies on virtual reality have been mainly conducted in scientific laboratories, because of the relatively high costs of virtual reality hardware and the need of specialist expertise for system setup and maintenance.However, the increasing diffusion of commercial virtual reality headsets and software could make it possible to move research from the laboratory to private homes. For example, researchers could create online experiments and ask people to participate using their own virtual reality equipment, eventually providing some kind of rewards for their involvement.An online collaboration platform could be developed to plan studies, create research protocols, collect and share data from participants. This open research strategy may offer several advantages. For example, the platform would offer researchers the opportunity to rapidly get input from large numbers of virtual reality participants. Furthermore, the users themselves could be involved in formulating research questions and co-create experiments with researchers.In the medical field, this approach has been successfully pioneered by online patient communities such as PatientsLikeMe and CureTogether. These social health sites provide a real-time research platform that allow clinical researchers and patients to partner for improving health outcomes. Other examples of internet-based citizen science projects include applications in astronomy, environmental protection, neuroscience to name a few (more examples can be found in Zooniverse, the world’s largest citizen science web portal).But virtual reality could extend the potential of citizen science even further. For example, virtual reality applications could be developed that are specifically designed for research purposes, i.e., virtual reality games that “manipulate” some variables of interest for researchers, or virtual reality versions of classic experimental paradigms, such as the “Stroop test”. It could be even possible to create virtual reality simulations of whole research laboratories, to allow participants to participate in online experiments using their avatars. [...]



Bringing more transparency to AI

Tue, 28 Feb 2017 23:13:00 +0100

The development of Artificial Intelligence (AI) has taken giant steps during the last decade, to the point that for many experts, including the world-renowned astrophysics Stephen Hawking and hi-tech entrepreneur Elon Musk, AI could even destroy our civilization by overtaking humans. However, on the other side, AI may bring about huge benefits for the humankind, some of which may be still beyond our imagination of today. Thus, the scientific community is faced with the challenge of how we can develop powerful AI systems that support our civilization, preventing, at the same time, the potential side effects of an uncontrolled AI evolution.

                                    (image)

To address these challenges, in late September 2016, tech giants Google, Facebook, Microsoft, Amazon and IBM launched a “Partnership on Artificial Intelligence to benefit People and Society”. The new alliance has been established “to study and formulate best practices on AI technologies, to advance the public’s understanding of AI, and to serve as an open platform for discussion and engagement about AI and its influences on people and society.”

As claimed in the mission statement, a specific goal of the initiative is to help improving public awareness of what is happening in the AI field, where a number of players are shaping the future of intelligent services. Also, the Partnership aims at creating a more inclusive discussion, by extending the participation from AI specialists to activists and experts in other disciplines, such as psychology, philosophy, economics, finance, sociology, public policy, and law, to discuss and provide guidance on emerging issues related to the impact of AI on society.

The Partnership on AI to benefit People and Society has the potential to create a greater multidisciplinary understanding of the opportunities and challenges associated with potential breakthroughs in this field; yet, some key players, such as Apple and Elon Musk's OpenAI, - a non-profit AI research project - have not yet joined the club.    

While the goals of the Partnership have been set, the strategy that the alliance intends to put in place to attain these objectives is still unclear. Thus, it is too early to understand how the association will concretely address the challenges that needs to be addressed with the public, i.e., how can AI be safely used to support military activities, or how to deal with the legal responsibilities for any damages caused by AI to humans.




Ping-Pong Robot

Tue, 28 Feb 2017 23:02:00 +0100

Developed by Omron Corporation, FORPHEUS (Future Omron Robotics Technology for Exploring Possibility of Harmonized aUtomation with Sinic Theoretics) has officially been given the Guinness World Records title for being the First robot table tennis tutor for its unique technological intelligence and educational capabilities.

According to the project's lead developer Taku Oya, the goal of FORPHEUS was to harmonise humans and robots, by way of teaching the game of table tennis to human players.

The machine is easily able to act as a coach thanks to cutting edge vision and motion sensors it can use to gage movement during a match. FORPHEUS also features an array of cameras that are situated above the ping pong table which monitors the position of the ball at an impressive rate of 80 times per second. This functionality also allows the robot to show its human student to see a projected image as to where the return ball will land so that they may improve their skills.

                               




The Potential of Virtual Reality for the Investigation of Awe

Wed, 22 Feb 2017 20:23:50 +0100

Alice Chirico, David B. Yaden, Giuseppe Riva and Andrea Gaggioli

Front. Psychol., 09 November 2016 https://doi.org/10.3389/fpsyg.2016.01766

Dipartimento di Psicologia, Università Cattolica del Sacro Cuore, Milan, Italy

The emotion of awe is characterized by the perception of vastness and a need for accommodation, which can include a positive and/or negative valence. While a number of studies have successfully manipulated this emotion, the issue of how to elicit particularly intense awe experiences in laboratory settings remains. We suggest that virtual reality (VR) is a particularly effective mood induction tool for eliciting awe. VR provides three key assets for improving awe. First, VR provides users with immersive and ecological yet controlled environments that can elicit a sense of “presence,” the subjective experience of “being there” in a simulated reality. Further, VR can be used to generate complex, vast stimuli, which can target specific theoretical facets of awe. Finally, VR allows for convenient tracking of participants’ behavior and physiological responses, allowing for more integrated assessment of emotional experience. We discussed the potential and challenges of the proposed approach with an emphasis on VR’s capacity to raise the signal of reactions to emotions such as awe in laboratory settings.




Facebook Study Finds Introverts Feel More Comfortable with VR Social Interaction

Thu, 19 Jan 2017 09:07:00 +0100

Via RoadToVrA recent study by Facebook IQ, in which people completed one-on-one conversations in VR, concluded that most people respond positively, and introverts in particular feel more comfortable. Facebook IQ is a team established to assist marketers in understanding the way people communicate online and offline.Facebook has been exploring the potential of social VR since their famous acquisition of Oculus VR in 2014. More recently, they detailed the results of their social VR avatar experiments and are planning to launch a ‘social VR app’ very soon. A different social experiment was recently completed by Facebook IQ, an internal team who help businesses understand communication trends and advertising effectiveness – asking 60 people to have a one-on-one conversation, half of them being in person, and half being in a VR environment wearing the Oculus Rift.Interestingly, they didn’t use the VR avatars seen in Facebook’s own demonstrations, nor did they use the Oculus avatars found in the Rift’s menus – instead they used vTime, a popular ‘sociable network’ app available for Rift, Gear VR, Cardboard and Daydream. vTime uses its own full-body avatar system, complete with automatically-animating hands – surprising that these would be used in such an experiment. However, it seems like the main reason for choosing the software was to use its comfortable ‘train cabin’ environment – a familiar and natural place to converse with a stranger – and the focus of the experiment was about vocal communication.Applied neuroscience company Neurons Inc was commissioned to assist with the study of cognitive and emotional responses; all participants wore high resolution electroencephalography (EEG) scanners, used to record electrical activity in the brain, and eye trackers. With half the group conducting a normal one-to-one conversation in person, and the other half engaged in vTime, Neurons Inc was able to compare the level of comfort and engagement of a VR conversation compared to a conventional one. The eye trackers helped to determine the user’s level of attention, and the EEG scanners were used to assess motivation and cognitive load, based on the level of brain activity. If the load is too low, it means the person is bored; too high and they’re stressed.According to the report published on Facebook Insights, the participants, who had mostly never tried VR before, were within the ‘optimal range of cognitive effort’, being neither bored nor overstimulated. The cognitive load decreased over time, meaning that people naturally became more comfortable as the conversation progressed. In the interviews that followed, 93% said that they liked their virtual conversation partner, and those who were identified as more introverted responded ‘particularly positively’, being more engaged by meeting in VR than by meeting in person.   [...]



Babies exposed to stimulation get brain boost

Mon, 02 Jan 2017 22:37:00 +0100

Source: The Norwegian University of Science and Technology (NTNU)Many new parents still think that babies should develop at their own pace, and that they shouldn't be challenged to do things that they're not yet ready for. Infants should learn to roll around under their own power, without any "helpful" nudges, and they shouldn't support their weight before they can stand or walk on their own. They mustn't be potty trained before they are ready for it.According to neuroscientist Audrey van der Meer, a professor at the Norwegian University of Science and Technology (NTNU) this mindset can be traced back to the early 1900s, when professionals were convinced that our genes determine who we are, and that child development occurred independently of the stimulation that a baby is exposed to. They believed it was harmful to hasten development, because development would and should happen naturally.Early stimulation in the form of baby gym activities and early potty training play a central role in Asia and Africa. The old development theory also contrasts with modern brain research that shows that early stimulation contributes to brain development gains even in the wee ones among us.Using the body and sensesVan der Meer is a professor of neuropsychology and has used advanced EEG technology for many years to study the brain activity of hundreds of babies.The results show that the neurons in the brains of young children quickly increase in both number and specialization as the baby learns new skills and becomes more mobile. Neurons in very young children form up to a thousand new connections per second.Van der Meer's research also shows that the development of our brain, sensory perception and motor skills happen in sync. She believes that even the smallest babies must be challenged and stimulated at their level from birth onward. They need to engage their entire body and senses by exploring their world and different materials, both indoors and out and in all types of weather. She emphasizes that the experiences must be self-produced; it is not enough for children merely to be carried or pushed in a stroller.Unused brain synapses disappear"Many people believe that children up to three years old only need cuddles and nappy changes, but studies show that rats raised in cages have less dendritic branching in the brain than rats raised in an environment with climbing and hiding places and tunnels. Research also shows that children born into cultures where early stimulation is considered important, develop earlier than Western children do," van der Meer says.She adds that the brains of young children are very malleable, and can therefore adapt to what is happening around them. If the new synapses that are formed in the brain are not being used, they disappear as the child grows up and the brain loses some of its plasticity.Van der Meer mentions the fact that Chinese babies hear a difference between the R and L sounds when they are four months old, but not when they get older. Since Chinese children do not need to distinguish between these sounds to learn their mother tongue, the brain synapses that carry this knowledge disappear when they are not used.Loses the ability to distinguish between soundsBabies actually manage to distinguish between the sounds of any language in the world when they are four months old, but by the time they are eight months old they have lost this ability, according to van der Meer.In the 1970s, it was believed that children could only learn one language properly. Foreign parents were advised not to speak their native language to their children, because it could impede the child's language development. Today we think completely differently, and there are examples of children who speak three, four or five languages fluently without suffering language confusion or delays.Brain research suggests that in these cases the native[...]



Mind-controlled toys: The next generation of Christmas presents?

Mon, 02 Jan 2017 22:33:38 +0100

Source: University of Warwick 

The next generation of toys could be controlled by the power of the mind, thanks to research by the University of Warwick.

(image)

Led by Professor Christopher James, Director of Warwick Engineering in Biomedicine at the School of Engineering, technology has been developed which allows electronic devices to be activated using electrical impulses from brain waves, by connecting our thoughts to computerised systems. Some of the most popular toys on children's lists to Santa - such as remote-controlled cars and helicopters, toy robots and Scalextric racing sets - could all be controlled via a headset, using 'the power of thought'.

This could be based on levels of concentration - thinking of your favourite colour or stroking your dog, for example. Instead of a hand-held controller, a headset is used to create a brain-computer interface - a communication link between the human brain and the computerised device.

Sensors in the headset measure the electrical impulses from brain at various different frequencies - each frequency can be somewhat controlled, under special circumstances. This activity is then processed by a computer, amplified and fed into the electrical circuit of the electronic toy. Professor James comments on the future potential for this technology: "Whilst brain-computer interfaces already exist - there are already a few gaming headsets on the market - their functionality has been quite limited.

New research is making the headsets now read cleaner and stronger signals than ever before - this means stronger links to the toy, game or action thus making it a very immersive experience. "The exciting bit is what comes next - how long before we start unlocking the front door or answering the phone through brain-computer interfaces?"

 




The Potential of Virtual Reality for the Investigation of Awe

Mon, 02 Jan 2017 22:21:18 +0100

The Potential of Virtual Reality for the Investigation of Awe

Alice Chirico, David B. Yaden, Giuseppe Riva and Andrea Gaggioli

Front. Psychol., 09 November 2016 | https://doi.org/10.3389/fpsyg.2016.01766

The emotion of awe is characterized by the perception of vastness and a need for accommodation, which can include a positive and/or negative valence. While a number of studies have successfully manipulated this emotion, the issue of how to elicit particularly intense awe experiences in laboratory settings remains. We suggest that virtual reality (VR) is a particularly effective mood induction tool for eliciting awe. VR provides three key assets for improving awe. First, VR provides users with immersive and ecological yet controlled environments that can elicit a sense of “presence,” the subjective experience of “being there” in a simulated reality. Further, VR can be used to generate complex, vast stimuli, which can target specific theoretical facets of awe. Finally, VR allows for convenient tracking of participants’ behavior and physiological responses, allowing for more integrated assessment of emotional experience. We discussed the potential and challenges of the proposed approach with an emphasis on VR’s capacity to raise the signal of reactions to emotions such as awe in laboratory settings.




Why we should fix inequalities in science

Mon, 02 Jan 2017 22:16:57 +0100

Science is a source of progress and the best hope for the future of mankind. With a world population reaching seven billion individuals and a growing consumption of (increasingly scarce) natural resources, the only chance that we have to avoid the collapse of civilization caused by our own expansion is to find new strategies for sustainable development. But addressing this challenge will be impossible without the support of scientific and technological innovation.

Thanks to scientific research, we have conquered space, developed therapies for devastating pathologies, and explored the mysteries of matter. Science is illuminating our understanding of the most complex object in nature—the brain—and expanding our knowledge of the universe. But today, science is suffering from several diseases.

In most countries, researchers strive to find the economic resources to carry out their research and keep their jobs. Since research funding is scarce, scientists are forced to compete with peers in order to obtain them. The odds of winning this hard competition, however, are increasingly more dependent upon the scientific impact and productivity of grant seekers than they are on the excellence of the research proposals. As a consequence, researchers who are not able to produce a decent number of publications on sufficiently prestigious outlets have almost no chance of receiving funding and realizing their ideas. This is why the notorious motto, publish or perish, has become the #1 concern of most researchers in the world.

The pressure to publish has several negative implications. First, it pushes conflicts of interest and risks of scientific misconduct, for example falsification or fabrication of data. Furthermore, the spasmodic need to increase one’s h-index (a way to measure academic impact) leads researchers (and especially younger scholars) to focus on topics that are currently more mainstream or fashionable, and thus more likely to attract a greater number of citations from other authors. And last - but not least - while the rush to publish can generate more papers, it also increases the volume of poor scientific work. It could be argued that only a competitive system, such as the current one, can make it possible to select the best talents and ideas, thus ensuring the highest return on investment for society. But in reality, there is no evidence that the increase in scientific productivity is associated with better research outcomes.

Furthermore, as recently shown by University of Michigan sociologist Yu Xie, science is becoming more and more a ‘‘winner takes all’’ field, in which a few talented scientists receive much greater recognition and rewards than lesser-known scientists for comparable contributions. As a consequence, many young researchers, although brilliant, have little chance of being recognized at all because most of the available resources are taken by the ‘‘giants’’ of their scientific disciplines. But in addition to diminishing integrity, lowering scientific quality, and spreading frustration among younger scholars, the current system may also threaten the very driving forces behind science: the passion to invent and discover. As noted by Teresa Amabile and Steven Kramer, two prominent experts of innovation, ‘‘what doesn’t motivate creativity can kill it.’’




The Impact of Virtual Reality on Chronic Pain

Mon, 02 Jan 2017 22:12:15 +0100

The Impact of Virtual Reality on Chronic Pain.

PLoS One. 2016;11(12):e0167523

Authors: Jones T, Moore T, Choo J

Abstract. The treatment of chronic pain could benefit from additional non-opioid interventions. Virtual reality (VR) has been shown to be effective in decreasing pain for procedural or acute pain but to date there have been few studies on its use in chronic pain. The present study was an investigation of the impact of a virtual reality application for chronic pain. Thirty (30) participants with various chronic pain conditions were offered a five-minute session using a virtual reality application called Cool! Participants were asked about their pain using a 0-10 visual analog scale rating before the VR session, during the session and immediately after the session. They were also asked about immersion into the VR world and about possible side effects. Pain was reduced from pre-session to post-session by 33%. Pain was reduced from pre-session during the VR session by 60%. These changes were both statistically significant at the p < .001 level. Three participants (10%) reported no change between pre and post pain ratings. Ten participants (33%) reported complete pain relief while doing the virtual reality session. All participants (100%) reported a decrease in pain to some degree between pre-session pain and during-session pain. The virtual reality experience was found here to provide a significant amount of pain relief. A head mounted display (HMD) was used with all subjects and no discomfort was experienced. Only one participant noted any side effects. VR seems to have promise as a non-opioid treatment for chronic pain and further investigation is warranted.




Effects of Smart-Tablet-Based Neurofeedback Training on Cognitive Function in Children with Attention Problems

Mon, 02 Jan 2017 22:07:08 +0100

Effects of Smart-Tablet-Based Neurofeedback Training on Cognitive Function in Children with Attention Problems

J Child Neurol. 2016 May;31(6):750-60 Authors: Shin MS, Jeon H, Kim M, Hwang T, Oh SJ, Hwangbo M, Kim KJ

Abstract We sought to determine whether smart-tablet-based neurofeedback could improve executive function-including attention, working memory, and self-regulation-in children with attention problems. Forty children (10-12 years old) with attention problems, as determined by ratings on the Conners Parent Rating Scale, were assigned to either a neurofeedback group that received 16 sessions or a control group. A comprehensive test battery that assessed general intelligence, visual and auditory attention, attentional shifting, response inhibition and behavior rating scales were administered to both groups before neurofeedback training. Several neuropsychological tests were conducted at posttraining and follow-up assessment. Scores on several neuropsychological tests and parent behavior rating scales showed significant improvement in the training group but not in the controls. The improvements remained through the follow-up assessment. This study suggests that the smart-tablet-based neurofeedback training program might improve cognitive function in children with attention problems.