Subscribe: Nature Chemical Biology - AOP - nature.com science feeds
http://www.nature.com/nchembio/journal/vaop/ncurrent/rss.rdf
Added By: Feedage Forager Feedage Grade B rated
Language: English
Tags:
approach  based  catalytic  complex  formation  human  new  oga  peptide synthesis  peptide  solid phase  strategy  structural  synthesis 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: Nature Chemical Biology - AOP - nature.com science feeds

Nature Chemical Biology - AOP - nature.com science feeds



Nature - the world's best science and medicine on your desktop



 



CRISPR–Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters

2017-04-10

Here we report an efficient CRISPR–Cas9 knock-in strategy to activate silent biosynthetic gene clusters (BGCs) in streptomycetes. We applied this one-step strategy to activate multiple BGCs of different classes in five Streptomyces species and triggered the production of unique metabolites, including a novel pentangular type II polyketide in Streptomyces viridochromogenes. This potentially scalable strategy complements existing activation approaches and facilitates discovery efforts to uncover new compounds with interesting bioactivities.



Insights into activity and inhibition from the crystal structure of human O-GlcNAcase

2017-03-27

O-GlcNAc hydrolase (OGA) catalyzes removal of βα-linked N-acetyl-D-glucosamine from serine and threonine residues. We report crystal structures of Homo sapiens OGA catalytic domain in apo and inhibited states, revealing a flexible dimer that displays three unique conformations and is characterized by subdomain α-helix swapping. These results identify new structural features of the substrate-binding groove adjacent to the catalytic site and open new opportunities for structural, mechanistic and drug discovery activities.



Structural and functional insight into human O-GlcNAcase

2017-03-27

O-GlcNAc hydrolase (OGA) removes O-linked N-acetylglucosamine (O-GlcNAc) from a myriad of nucleocytoplasmic proteins. Through co-expression and assembly of OGA fragments, we determined the three-dimensional structure of human OGA, revealing an unusual helix-exchanged dimer that lays a structural foundation for an improved understanding of substrate recognition and regulation of OGA. Structures of OGA in complex with a series of inhibitors define a precise blueprint for the design of inhibitors that have clinical value.



Decoding cyclase-dependent assembly of hapalindole and fischerindole alkaloids

2017-03-13

The formation of C–C bonds in an enantioselective fashion to create complex polycyclic scaffolds in the hapalindole- and fischerindole- type alkaloids from Stigonematales cyanobacteria represents a compelling and urgent challenge in adapting microbial biosynthesis as a catalytic platform in drug development. Here we determine the biochemical basis for tri- and tetracyclic core formation in these secondary metabolites, involving a new class of cyclases that catalyze a complex cyclization cascade.



A fully automated flow-based approach for accelerated peptide synthesis

2017-02-28

Here we report a fully automated, flow-based approach to solid-phase polypeptide synthesis, with amide bond formation in 7 seconds and total synthesis times of 40 seconds per amino acid residue. Crude peptide purities and isolated yields were comparable to those for standard-batch solid-phase peptide synthesis. At full capacity, this approach can yield tens of thousands of individual 30-mer peptides per year.