Subscribe: Schneier on Security
http://www.schneier.com/blog/index.rdf
Added By: Feedage Forager Feedage Grade A rated
Language: English
Tags:
apps  authoritative server  data  dns  insurance  odns  research  security research  security  squid  system  systems  vote  voting 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: Schneier on Security

Schneier on Security



A blog covering security and security technology.



Updated: 2018-04-23T12:48:47Z

 



Yet Another Biometric: Ear Shape

2018-04-23T12:48:47Z

This acoustic technology identifies individuals by their ear shapes. No information about either false positives or false negatives....

This acoustic technology identifies individuals by their ear shapes. No information about either false positives or false negatives.




Friday Squid Blogging: Squid Prices Rise as Catch Decreases

2018-04-20T21:26:43Z

In Japan: Last year's haul sank 15% to 53,000 tons, according to the JF Zengyoren national federation of fishing cooperatives. The squid catch has fallen by half in just two years. The previous low was plumbed in 2016. Lighter catches have been blamed on changing sea temperatures, which impedes the spawning and growth of the squid. Critics have also pointed...

In Japan:

Last year's haul sank 15% to 53,000 tons, according to the JF Zengyoren national federation of fishing cooperatives. The squid catch has fallen by half in just two years. The previous low was plumbed in 2016.

Lighter catches have been blamed on changing sea temperatures, which impedes the spawning and growth of the squid. Critics have also pointed to overfishing by North Korean and Chinese fishing boats.

Wholesale prices of flying squid have climbed as a result. Last year's average price per kilogram came to 564 yen, a roughly 80% increase from two years earlier, according to JF Zengyoren.

As usual, you can also use this squid post to talk about the security stories in the news that I haven't covered.

Read my blog posting guidelines here.




Securing Elections

2018-04-20T11:44:25Z

Elections serve two purposes. The first, and obvious, purpose is to accurately choose the winner. But the second is equally important: to convince the loser. To the extent that an election system is not transparently and auditably accurate, it fails in that second purpose. Our election systems are failing, and we need to fix them. Today, we conduct our elections... Elections serve two purposes. The first, and obvious, purpose is to accurately choose the winner. But the second is equally important: to convince the loser. To the extent that an election system is not transparently and auditably accurate, it fails in that second purpose. Our election systems are failing, and we need to fix them. Today, we conduct our elections on computers. Our registration lists are in computer databases. We vote on computerized voting machines. And our tabulation and reporting is done on computers. We do this for a lot of good reasons, but a side effect is that elections now have all the insecurities inherent in computers. The only way to reliably protect elections from both malice and accident is to use something that is not hackable or unreliable at scale; the best way to do that is to back up as much of the system as possible with paper. Recently, there have been two graphic demonstrations of how bad our computerized voting system is. In 2007, the states of California and Ohio conducted audits of their electronic voting machines. Expert review teams found exploitable vulnerabilities in almost every component they examined. The researchers were able to undetectably alter vote tallies, erase audit logs, and load malware on to the systems. Some of their attacks could be implemented by a single individual with no greater access than a normal poll worker; others could be done remotely. Last year, the Defcon hackers' conference sponsored a Voting Village. Organizers collected 25 pieces of voting equipment, including voting machines and electronic poll books. By the end of the weekend, conference attendees had found ways to compromise every piece of test equipment: to load malicious software, compromise vote tallies and audit logs, or cause equipment to fail. It's important to understand that these were not well-funded nation-state attackers. These were not even academics who had been studying the problem for weeks. These were bored hackers, with no experience with voting machines, playing around between parties one weekend. It shouldn't be any surprise that voting equipment, including voting machines, voter registration databases, and vote tabulation systems, are that hackable. They're computers -- often ancient computers running operating systems no longer supported by the manufacturers -- and they don't have any magical security technology that the rest of the industry isn't privy to. If anything, they're less secure than the computers we generally use, because their manufacturers hide any flaws behind the proprietary nature of their equipment. We're not just worried about altering the vote. Sometimes causing widespread failures, or even just sowing mistrust in the system, is enough. And an election whose results are not trusted or believed is a failed election. Voting systems have another requirement that makes security even harder to achieve: the requirement for a secret ballot. Because we have to securely separate the election-roll system that determines who can vote from the system that collects and tabulates the votes, we can't use the security systems available to banking and other high-value applications. We can securely bank online, but can't securely vote online. If we could do away with anonymity -- if everyone could check that their vote was counted correctly -- then it would be easy to secure the vote. But that would lead to other problems. Before the US had the secret ballot, voter coercion and vote-buying were widespread. We can't, so we need to accept that our voting systems are insecure. We need an election system that is resilient to the threats. And fo[...]



Lifting a Fingerprint from a Photo

2018-04-19T11:51:37Z

Police in the UK were able to read a fingerprint from a photo of a hand: Staff from the unit's specialist imaging team were able to enhance a picture of a hand holding a number of tablets, which was taken from a mobile phone, before fingerprint experts were able to positively identify that the hand was that of Elliott Morris....

Police in the UK were able to read a fingerprint from a photo of a hand:

Staff from the unit's specialist imaging team were able to enhance a picture of a hand holding a number of tablets, which was taken from a mobile phone, before fingerprint experts were able to positively identify that the hand was that of Elliott Morris.

[...]

Speaking about the pioneering techniques used in the case, Dave Thomas, forensic operations manager at the Scientific Support Unit, added: "Specialist staff within the JSIU fully utilised their expert image-enhancing skills which enabled them to provide something that the unit's fingerprint identification experts could work. Despite being provided with only a very small section of the fingerprint which was visible in the photograph, the team were able to successfully identify the individual."




Oblivious DNS

2018-04-18T11:29:36Z

Interesting idea: ...we present Oblivious DNS (ODNS), which is a new design of the DNS ecosystem that allows current DNS servers to remain unchanged and increases privacy for data in motion and at rest. In the ODNS system, both the client is modified with a local resolver, and there is a new authoritative name server for .odns. To prevent an...

Interesting idea:

...we present Oblivious DNS (ODNS), which is a new design of the DNS ecosystem that allows current DNS servers to remain unchanged and increases privacy for data in motion and at rest. In the ODNS system, both the client is modified with a local resolver, and there is a new authoritative name server for .odns. To prevent an eavesdropper from learning information, the DNS query must be encrypted; the client generates a request for www.foo.com, generates a session key k, encrypts the requested domain, and appends the TLD domain .odns, resulting in {www.foo.com}k.odns. The client forwards this, with the session key encrypted under the .odns authoritative server's public key ({k}PK) in the "Additional Information" record of the DNS query to the recursive resolver, which then forwards it to the authoritative name server for .odns. The authoritative server decrypts the session key with his private key, and then subsequently decrypts the requested domain with the session key. The authoritative server then forwards the DNS request to the appropriate name server, acting as a recursive resolver. While the name servers see incoming DNS requests, they do not know which clients they are coming from; additionally, an eavesdropper cannot connect a client with her corresponding DNS queries.

News article.




Hijacking Emergency Sirens

2018-04-17T11:29:48Z

Turns out it's easy to hijack emergency sirens with a radio transmitter....

Turns out it's easy to hijack emergency sirens with a radio transmitter.




The DMCA and its Chilling Effects on Research

2018-04-16T11:46:42Z

The Center for Democracy and Technology has a good summary of the current state of the DMCA's chilling effects on security research. To underline the nature of chilling effects on hacking and security research, CDT has worked to describe how tinkerers, hackers, and security researchers of all types both contribute to a baseline level of security in our digital environment...

The Center for Democracy and Technology has a good summary of the current state of the DMCA's chilling effects on security research.

To underline the nature of chilling effects on hacking and security research, CDT has worked to describe how tinkerers, hackers, and security researchers of all types both contribute to a baseline level of security in our digital environment and, in turn, are shaped themselves by this environment, most notably when things they do upset others and result in threats, potential lawsuits, and prosecution. We've published two reports (sponsored by the Hewlett Foundation and MacArthur Foundation) about needed reforms to the law and the myriad of ways that security research directly improves people's lives. To get a more complete picture, we wanted to talk to security researchers themselves and gauge the forces that shape their work; essentially, we wanted to "take the pulse" of the security research community.

Today, we are releasing a third report in service of this effort: "Taking the Pulse of Hacking: A Risk Basis for Security Research." We report findings after having interviewed a set of 20 security researchers and hackers -- half academic and half non-academic -- about what considerations they take into account when starting new projects or engaging in new work, as well as to what extent they or their colleagues have faced threats in the past that chilled their work. The results in our report show that a wide variety of constraints shape the work they do, from technical constraints to ethical boundaries to legal concerns, including the DMCA and especially the CFAA.

Note: I am a signatory on the letter supporting unrestricted security research.




Friday Squid Blogging: Eating Firefly Squid

2018-04-13T21:24:56Z

In Tokama, Japan, you can watch the firefly squid catch and eat them in various ways: "It's great to eat hotaruika around when the seasons change, which is when people tend to get sick," said Ryoji Tanaka, an executive at the Toyama prefectural federation of fishing cooperatives. "In addition to popular cooking methods, such as boiling them in salted water,...

In Tokama, Japan, you can watch the firefly squid catch and eat them in various ways:

"It's great to eat hotaruika around when the seasons change, which is when people tend to get sick," said Ryoji Tanaka, an executive at the Toyama prefectural federation of fishing cooperatives. "In addition to popular cooking methods, such as boiling them in salted water, you can also add them to pasta or pizza."

Now there is a new addition: eating hotaruika raw as sashimi. However, due to reports that parasites have been found in their internal organs, the Health, Labor and Welfare Ministry recommends eating the squid after its internal organs have been removed, or after it has been frozen for at least four days at minus 30 C or lower.

As usual, you can also use this squid post to talk about the security stories in the news that I haven't covered.

Read my blog posting guidelines here.




COPPA Compliance

2018-04-13T11:43:39Z

Interesting research: "'Won't Somebody Think of the Children?' Examining COPPA Compliance at Scale": Abstract: We present a scalable dynamic analysis framework that allows for the automatic evaluation of the privacy behaviors of Android apps. We use our system to analyze mobile apps' compliance with the Children's Online Privacy Protection Act (COPPA), one of the few stringent privacy laws in the...

Interesting research: "'Won't Somebody Think of the Children?' Examining COPPA Compliance at Scale":

Abstract: We present a scalable dynamic analysis framework that allows for the automatic evaluation of the privacy behaviors of Android apps. We use our system to analyze mobile apps' compliance with the Children's Online Privacy Protection Act (COPPA), one of the few stringent privacy laws in the U.S. Based on our automated analysis of 5,855 of the most popular free children's apps, we found that a majority are potentially in violation of COPPA, mainly due to their use of third-party SDKs. While many of these SDKs offer configuration options to respect COPPA by disabling tracking and behavioral advertising, our data suggest that a majority of apps either do not make use of these options or incorrectly propagate them across mediation SDKs. Worse, we observed that 19% of children's apps collect identifiers or other personally identifiable information (PII) via SDKs whose terms of service outright prohibit their use in child-directed apps. Finally, we show that efforts by Google to limit tracking through the use of a resettable advertising ID have had little success: of the 3,454 apps that share the resettable ID with advertisers, 66% transmit other, non-resettable, persistent identifiers as well, negating any intended privacy-preserving properties of the advertising ID.




Cybersecurity Insurance

2018-04-12T11:36:21Z

Good article about how difficult it is to insure an organization against Internet attacks, and how expensive the insurance is. Companies like retailers, banks, and healthcare providers began seeking out cyberinsurance in the early 2000s, when states first passed data breach notification laws. But even with 20 years' worth of experience and claims data in cyberinsurance, underwriters still struggle with...

Good article about how difficult it is to insure an organization against Internet attacks, and how expensive the insurance is.

Companies like retailers, banks, and healthcare providers began seeking out cyberinsurance in the early 2000s, when states first passed data breach notification laws. But even with 20 years' worth of experience and claims data in cyberinsurance, underwriters still struggle with how to model and quantify a unique type of risk.

"Typically in insurance we use the past as prediction for the future, and in cyber that's very difficult to do because no two incidents are alike," said Lori Bailey, global head of cyberrisk for the Zurich Insurance Group. Twenty years ago, policies dealt primarily with data breaches and third-party liability coverage, like the costs associated with breach class-action lawsuits or settlements. But more recent policies tend to accommodate first-party liability coverage, including costs like online extortion payments, renting temporary facilities during an attack, and lost business due to systems failures, cloud or web hosting provider outages, or even IT configuration errors.

In my new book -- out in September -- I write:

There are challenges to creating these new insurance products. There are two basic models for insurance. There's the fire model, where individual houses catch on fire at a fairly steady rate, and the insurance industry can calculate premiums based on that rate. And there's the flood model, where an infrequent large-scale event affects large numbers of people -- but again at a fairly steady rate. Internet+ insurance is complicated because it follows neither of those models but instead has aspects of both: individuals are hacked at a steady (albeit increasing) rate, while class breaks and massive data breaches affect lots of people at once. Also, the constantly changing technology landscape makes it difficult to gather and analyze the historical data necessary to calculate premiums.

BoingBoing article.