Subscribe: pubmed: "Journal of biomecha...
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/erss.cgi?rss_guid=0ch9UIbQJcwYJpqtjOgdNuzLRG0TopMNviFp25UsmWt
Preview: pubmed: "Journal of biomecha...

pubmed: "Journal of biomecha...



NCBI: db=pubmed; Term=("Journal of biomechanics"[Jour])



 



Effects of tracking landmarks and tibial point of resistive force application on the assessment of patellar tendon mechanical properties in vivo.
Related Articles

Effects of tracking landmarks and tibial point of resistive force application on the assessment of patellar tendon mechanical properties in vivo.

J Biomech. 2018 Feb 11;:

Authors: Mersmann F, Seynnes OR, Legerlotz K, Arampatzis A

Abstract
The different methods used to assess patellar tendon elongation in vivo may partly explain the large variation of mechanical properties reported in the literature. The present study investigated the effects of tracking landmark position and tibial point of resistive force application during leg extensions in a dynamometer. Nineteen adults performed isometric contractions with a proximal and distal dynamometer shank pad position. Knee joint moments were calculated employing an inverse dynamics approach. Tendon elongation was measured using the patellar apex and either the tibial tuberosity (T) or plateau (P) as tracking landmark. Using P for tracking introduced a bias towards greater values of tendon elongation at all force levels from 100 N to maximum tendon force (TFmax; p < 0.05). The differences between landmarks considering maximum tendon strain were greater at the proximal shank pad position (p < 0.05). Tendon stiffness was lower for P compared with T, but only in intervals up to 50% of TFmax (p < 0.05). The agreement between T and P for stiffness calculated between 50% and TFmax was acceptable with the distal, but poor with the proximal pad position. We demonstrated that using the tibia plateau and not the insertion as tracking landmark clearly affects the assessment of the force-elongation curve of the patellar tendon. However, using a distal point of resistive force application and calculating tendon stiffness between 50% and TFmax seems to yield an acceptable agreement between landmarks. These findings have important implications for the assessment of tendon properties in vivo and cross-study comparisons.

PMID: 29463386 [PubMed - as supplied by publisher]




A comparison of methods to determine center of mass during pregnancy.
Related Articles

A comparison of methods to determine center of mass during pregnancy.

J Biomech. 2018 Feb 12;:

Authors: Catena RD, Connolly CP, McGeorge KM, Campbell N

Abstract
Balance changes during pregnancy likely occur because of mass gains and mass distribution changes. However, to date there is no way of tracking balance through center of mass motion because no method is available to identify of the body center of mass throughout pregnancy. We compared methods for determining segment masses and torso center of mass location. The availability of a method for tracking these changes during pregnancy will make determining balance changes through center of mass motion an option for future pregnancy balance research. Thirty pregnant women from eight weeks gestation until birth were recruited for monthly anthropometric measurements, motion capture analysis of body segment locations, and force plate analysis of center of pressure during quiet standing and supine laying. From these measurements, we were able to compare regression, volume measurement, and weighted sum methods to calculate body center of mass throughout pregnancy. We found that mass changes around the trunk were most prevalent as expected, but mass changes throughout the body (especially the thighs) were also seen. Our findings also suggest that a series of anthropometric measurements first suggested by Pavol et al. (2002), in combination with quiet standing on a force plate, can be used to identify the needed components (segment masses and torso center of mass location in three dimensions) to calculate body center of mass changes during pregnancy. The results of this study will make tracking of center of mass motion a possibility for future pregnancy balance research.

PMID: 29463385 [PubMed - as supplied by publisher]