Subscribe: pubmed: "Journal of biomecha...
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/erss.cgi?rss_guid=0ch9UIbQJcwYJpqtjOgdNuzLRG0TopMNviFp25UsmWt
Added By: Feedage Forager Feedage Grade B rated
Language: English
Tags:
cyclist  expression  gait  knee  lateral trunk  lateral  lean gait  lean  mir mir  mir  mirna  normal  pressure  trunk lean  trunk 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: pubmed: "Journal of biomecha...

pubmed: "Journal of biomecha...



NCBI: db=pubmed; Term=("Journal of biomechanics"[Jour])



 



Aerodynamic study of time-trial helmets in cycling racing using CFD analysis.
Related Articles

Aerodynamic study of time-trial helmets in cycling racing using CFD analysis.

J Biomech. 2017 Nov 08;:

Authors: Beaumont F, Taiar R, Polidori G, Trenchard H, Grappe F

Abstract
The aerodynamic drag of three different time-trial cycling helmets was analyzed numerically for two different cyclist head positions. Computational Fluid Dynamics (CFD) methods were used to investigate the detailed airflow patterns around the cyclist for a constant velocity of 15 m/s without wind. The CFD simulations have focused on the aerodynamic drag effects in terms of wall shear stress maps and pressure coefficient distributions on the cyclist/helmet system. For a given head position, the helmet shape, by itself, obtained a weak effect on a cyclist's aerodynamic performance (<1.5%). However, by varying head position, a cyclist significantly influences aerodynamic performance; the maximum difference between both positions being about 6.4%. CFD results have also shown that both helmet shape and head position significantly influence drag forces, pressure and wall shear stress distributions on the whole cyclist's body due to the change in the near-wake behavior and in location of corresponding separation and attachment areas around the cyclist.

PMID: 29150346 [PubMed - as supplied by publisher]




Hydrostatic pressure as epigenetic modulator in chondrocyte cultures: A study on miRNA-155, miRNA-181a and miRNA-223 expression levels.
Related Articles

Hydrostatic pressure as epigenetic modulator in chondrocyte cultures: A study on miRNA-155, miRNA-181a and miRNA-223 expression levels.

J Biomech. 2017 Nov 07;:

Authors: De Palma A, Cheleschi S, Pascarelli NA, Giannotti S, Galeazzi M, Fioravanti A

Abstract
Mechanical stimuli and hydrostatic pressure (HP) play an important role in the regulation of chondrocytes metabolism. Growing evidence demonstrated the ability of mechanical loading to modulate the expression of microRNA (miRNA) involved in chondrocytes homeostasis and in the pathogenesis of osteoarthritis (OA). The expression of miR-155, miR-181a and miR-223 in normal and OA chondrocyte cultures, and their potential modifications following exposure to three hours of a cyclic HP (1-5 MPa, frequency 0.25 Hz) were investigated. Also evaluated the expression of Chuk, regulator of the NF-kB pathway activation, which is a target gene of miR-223, was evaluated. Chondrocytes were collected immediately after pressurization (T0), and following 12, 24, and 48 h. Total RNA was extracted, reverse transcribed and used for real-time PCR. At basal condition, a significant increase of miR-155 and miR-181a was observed in OA in comparison to normal cells; on the contrary, no differences in miR-223 and Chuk expression levels were detected between normal and OA chondrocytes. miR-155 and miR-181a resulted significantly downregulated immediately after pressurization (T0) in OA cells. The pressure effect on miR-155 and miR-181a levels was maintained over time. No modifications of miR-223 were observed in response to HP, while Chuk levels resulted significantly reduced at T0 and after 12 h. Pressurization did not cause any modifications in normal cells. In conclusion, HP was able to modulate the expression of miRNA associated to OA pathogenesis. The preliminary results about Chuk response to pressure raised interest in its involvement in the possible HP induced NF-kB pathway modulation.

PMID: 29150345 [PubMed - as supplied by publisher]




Biomechanical mechanism of lateral trunk lean gait for knee osteoarthritis patients.
Related Articles

Biomechanical mechanism of lateral trunk lean gait for knee osteoarthritis patients.

J Biomech. 2017 Nov 04;:

Authors: Tokuda K, Anan M, Takahashi M, Sawada T, Tanimoto K, Kito N, Shinkoda K

Abstract
The biomechanical mechanism of lateral trunk lean gait employed to reduce external knee adduction moment (KAM) for knee osteoarthritis (OA) patients is not well known. This mechanism may relate to the center of mass (COM) motion. Moreover, lateral trunk lean gait may affect motor control of the COM displacement. Uncontrolled manifold (UCM) analysis is an evaluation index used to understand motor control and variability of the motor task. Here we aimed to clarify the biomechanical mechanism to reduce KAM during lateral trunk lean gait and how motor variability controls the COM displacement. Twenty knee OA patients walked under two conditions: normal and lateral trunk lean gait conditions. UCM analysis was performed with respect to the COM displacement in the frontal plane. We also determined how the variability is structured with regards to the COM displacement as a performance variable. The peak KAM under lateral trunk lean gait was lower than that under normal gait. The reduced peak KAM observed was accompanied by medially shifted knee joint center, shortened distance of the center of pressure to knee joint center, and shortened distance of the knee-ground reaction force lever arm during the stance phase. Knee OA patients with lateral trunk lean gait could maintain kinematic synergy by utilizing greater segmental configuration variance to the performance variable. However, the COM displacement variability of lateral trunk lean gait was larger than that of normal gait. Our findings may provide clinical insights to effectively evaluate and prescribe gait modification training for knee OA patients.

PMID: 29150344 [PubMed - as supplied by publisher]