Subscribe: pubmed: "Journal of biomecha...
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/erss.cgi?rss_guid=0ch9UIbQJcwYJpqtjOgdNuzLRG0TopMNviFp25UsmWt
Added By: Feedage Forager Feedage Grade B rated
Language: English
Tags:
acl deficient  back profile  cartilage  contact stress  contact  fibre bundles  heel lifting  joint centers  joint  knees  stress 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: pubmed: "Journal of biomecha...

pubmed: "Journal of biomecha...



NCBI: db=pubmed; Term=("Journal of biomechanics"[Jour])



 



Estimation of spinal joint centers from external back profile and anatomical landmarks.
(image) Related Articles

Estimation of spinal joint centers from external back profile and anatomical landmarks.

J Biomech. 2017 Nov 20;:

Authors: Nerot A, Skalli W, Wang X

Abstract
Defining a subject-specific model of the human body is required for motion analysis in many fields, such as in ergonomics and clinical applications. However, locating internal joint centers from external characteristics of the body still remains a challenging issue, in particular for the spine. Current methods mostly require a set of rarely accessible (3D back or trunk surface) or operator dependent inputs (large number of palpated landmarks and landmarks-based anthropometrics). Therefore, there is a need to provide an alternative way to estimate joint centers only using a limited number of easily palpable landmarks and the external back profile. Two methods were proposed to predict the spinal joint centers: one using only 6 anatomical landmarks (ALs) (2 PSIS, T8, C7, IJ and PX) and one using both 6 ALs and the external back profile. Regressions were established using the X-ray based 3D reconstructions of 80 subjects and evaluated on 13 additional subjects of variable anthropometry. The predicted location of joint centers showed an average error 9.7 mm (±5.0) in the sagittal plane for all joints when using the external back profile. Similar results were obtained without using the external back profile, 9.5 mm (±5.0). Compared to other existing methods, the proposed methods offered a more accurate prediction with a smaller number of palpated points. Additional methods have to be developed for considering postures other than standing, such as a sitting position.

PMID: 29223495 [PubMed - as supplied by publisher]




Dental functional morphology predicts the scaling of chewing rate in mammals.
(image) Related Articles

Dental functional morphology predicts the scaling of chewing rate in mammals.

J Biomech. 2017 Nov 27;:

Authors: Žliobaitė I, Fortelius M

Abstract
How food intake and mastication scale to satisfy the metabolic needs of mammals has been the subject of considerable scientific debate. Existing theory suggests that the negative allometric scaling of metabolic rate with body mass is compensated by a matching allometric scaling of the chewing rate. Why empirical studies have found that the scaling coefficients of the chewing rate seem to be systematically smaller than expected from theory remains unknown. Here we explain this imparity by decoupling the functional surface area of teeth from overall surface area. The functional surface area is relatively reduced in forms emphasizing linear edges (e.g., lophodont) compared with forms lacking linear structures (e.g., bunodont). In forms with reduced relative functional surface, the deficit in food processed per chew appears to be compensated for by increased chewing rate, such that the metabolic requirements are met. This compensation accounts for the apparent difference between theoretically predicted and observed scaling of chewing rates. We suggest that this reflects adaptive functional evolution to plant foods with different fracture properties and extend the theory to incorporate differences in functional morphology.

PMID: 29223494 [PubMed - as supplied by publisher]




Tensile behaviour of individual fibre bundles in the human lumbar anulus fibrosus.
(image) Related Articles

Tensile behaviour of individual fibre bundles in the human lumbar anulus fibrosus.

J Biomech. 2017 Nov 28;:

Authors: Pham DT, Shapter JG, Costi JJ

Abstract
Disc degeneration is a common medical affliction whose origins are not fully understood. An improved understanding of its underlying mechanisms could lead to the development of more effective treatments. The aim of this paper was to investigate the effect of (1) degeneration, (2) circumferential region and (3) strain rate on the microscale mechanical properties (toe region modulus, linear modulus, extensibility, phase angle) of individual fibre bundles in the anulus fibrosus lamellae of the human intervertebral disc. Healthy and degenerate fibre bundles excised from different circumferential regions in the outer anulus (posterolateral, lateral, anterolateral, anterior) were tensile tested at slow (0.1%/s), medium (1%/s) and fast (10%/s) strain rates using a micromechanical testing system. Our preliminary results showed that neither degeneration nor circumferential region significantly affected the fibre bundles' mechanical behaviour. However, when the fibre bundles were tested at higher strain rates, this resulted in significantly higher linear moduli and lower phase angles. These findings, compared with data from other studies investigating single and multiple lamellae sections, suggest that degeneration has minimal effect on outer anulus mechanics irrespective of structural level, and the inter- and intra-lamellar arrangement and continuity of the fibre bundles may influence the lamellae's regional behaviour and viscoelasticity.

PMID: 29221904 [PubMed - as supplied by publisher]




Discrete element analysis is a valid method for computing joint contact stress in the hip before and after acetabular fracture.
(image) Related Articles

Discrete element analysis is a valid method for computing joint contact stress in the hip before and after acetabular fracture.

J Biomech. 2017 Nov 16;:

Authors: Townsend KC, Thomas-Aitken HD, Rudert MJ, Kern AM, Willey MC, Anderson DD, Goetz JE

Abstract
Evaluation of abnormalities in joint contact stress that develop after inaccurate reduction of an acetabular fracture may provide a potential means for predicting the risk of developing post-traumatic osteoarthritis. Discrete element analysis (DEA) is a computational technique for calculating intra-articular contact stress distributions in a fraction of the time required to obtain the same information using the more commonly employed finite element analysis technique. The goal of this work was to validate the accuracy of DEA-computed contact stress against physical measurements of contact stress made in cadaveric hips using Tekscan sensors. Four static loading tests in a variety of poses from heel-strike to toe-off were performed in two different cadaveric hip specimens with the acetabulum intact and again with an intentionally malreduced posterior wall acetabular fracture. DEA-computed contact stress was compared on a point-by-point basis to stress measured from the physical experiments. There was good agreement between computed and measured contact stress over the entire contact area (correlation coefficients ranged from 0.88 to 0.99). DEA-computed peak contact stress was within an average of 0.5 MPa (range 0.2-0.8 MPa) of the Tekscan peak stress for intact hips, and within an average of 0.6 MPa (range 0-1.6 MPa) for fractured cases. DEA-computed contact areas were within an average of 33% of the Tekscan-measured areas (range: 1.4-60%). These results indicate that the DEA methodology is a valid method for accurately estimating contact stress in both intact and fractured hips.

PMID: 29221903 [PubMed - as supplied by publisher]




A comparison of patellofemoral cartilage morphology and deformation in anterior cruciate ligament deficient versus uninjured knees.
(image) Related Articles

A comparison of patellofemoral cartilage morphology and deformation in anterior cruciate ligament deficient versus uninjured knees.

J Biomech. 2017 Nov 27;:

Authors: Owusu-Akyaw KA, Heckelman LN, Cutcliffe HC, Sutter EG, Englander ZA, Spritzer CE, Garrett WE, DeFrate LE

Abstract
Anterior cruciate ligament (ACL) deficient patients have an increased rate of patellofemoral joint (PFJ) osteoarthritis (OA) as compared to the general population. Although the cause of post-injury OA is multi-factorial, alterations in joint biomechanics may predispose patients to cartilage degeneration. This study aimed to compare in vivo PFJ morphology and mechanics between ACL deficient and intact knees in subjects with unilateral ACL ruptures. Eight male subjects underwent baseline MRI scans of both knees. They then performed a series of 60 single-legged hops, followed by a post-exercise MRI scan. This process was repeated for the contralateral knee. The MR images were converted into three-dimensional surface models of cartilage and bone in order to assess cartilage thickness distributions and strain following exercise. Prior to exercise, patellar cartilage was significantly thicker in intact knees as compared to ACL deficient knees by 1.8%. In response to exercise, we observed average patellar cartilage strains of 5.4 ± 1.1% and 2.5 ± 1.4% in the ACL deficient and intact knees, respectively. Importantly, the magnitude of patellar cartilage strain in the ACL deficient knees was significantly higher than in the intact knees. However, while trochlear cartilage experienced a mean strain of 2.4 ± 1.6%, there was no difference in trochlear cartilage strain between the ACL deficient and uninjured knees. In summary, we found that ACL deficiency was associated with decreased patellar cartilage thickness and increased exercise-induced patellar cartilage strain when compared to the uninjured contralateral knees.

PMID: 29221902 [PubMed - as supplied by publisher]




Role of heel lifting in standing balance recovery: A simulation study.
(image) Related Articles

Role of heel lifting in standing balance recovery: A simulation study.

J Biomech. 2017 Dec 02;:

Authors: Cheng KB, Tanabe H, Chen WC, Chiu HT

Abstract
Although lifting the heels has frequently been observed during balance recovery, the function of this movement has generally been overlooked. The present study aimed to investigate the functional role of heel lifting during regaining balance from a perturbed state. Computer simulation was employed to objectively examine the effect of allowing/constraining heel lifting on balance performance. The human model consisted of 3 rigid body segments connected by frictionless joints. Movements were driven by joint torques depending on current joint angle, angular velocity, and activation level. Starting from forward-inclined and static straight-body postures, the optimization goal was to recover balance effectively (so that ground projection of the mass center returned to the inside of the base of support) and efficiently by adjusting ankle and hip joint activation levels. Allowing/constraining heel lifting resulted in virtually identical movements when balance was mildly perturbed at the smallest lean angle (8°). At larger lean angles (8.5° and 9°), heel lifting assisted balance recovery more evidently with larger joint movements. Partial and altered timings of ankle/hip torque activation due to constraining heel lifting reduced linear and angular momentum generation for avoiding forward falling, and resulted in hindered balancing performance.

PMID: 29221901 [PubMed - as supplied by publisher]