Subscribe: pubmed: "Journal of biomecha...
Preview: pubmed: "Journal of biomecha...

pubmed: "Journal of biomecha...

NCBI: db=pubmed; Term=("Journal of biomechanics"[Jour])


Whole-body angular momentum during sloped walking using passive and powered lower-limb prostheses.

Whole-body angular momentum during sloped walking using passive and powered lower-limb prostheses.

J Biomech. 2016 Sep 14;

Authors: Pickle NT, Wilken JM, Aldridge Whitehead JM, Silverman AK

Sloped walking requires altered strategies for maintaining dynamic balance relative to level-ground walking, as evidenced by changes in sagittal-plane whole-body angular momentum (H) in able-bodied individuals. The ankle plantarflexor muscles are critical for regulating H, and functional loss of these muscles from transtibial amputation affects this regulation. However, it is unclear if a powered prosthesis, which more closely emulates intact ankle function than a passive energy-storage-and-return prosthesis, affects H differently during sloped walking. Therefore, our purpose was to investigate H in individuals with unilateral transtibial amputation when using powered and passive prostheses. Overall, the range of H was greater in people with a transtibial amputation relative to able-bodied individuals. On a -10° decline, individuals with amputation did not decrease H as much as able-bodied individuals, and had reduced prosthetic limb braking ground reaction forces and knee power absorption. On a +10° incline, individuals with amputation had a greater relative increase of H than able-bodied individuals, a more anterior placement of the prosthetic foot, and higher peak hip power generation. The powered prosthesis condition resulted in a smaller range of H during prosthetic stance relative to the passive condition, although it was still larger than able-bodied individuals. Our results suggest that prosthetic ankle power generation may help regulate dynamic balance during prosthetic stance, but alone is not sufficient for restoring H to that of able-bodied individuals on slopes. Contributions of knee extensor muscles and the biarticular gastrocnemius in regulating H on slopes should be further investigated.

PMID: 27670646 [PubMed - as supplied by publisher]