Subscribe: pubmed: "Journal of biomecha...
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/erss.cgi?rss_guid=0ch9UIbQJcwYJpqtjOgdNuzLRG0TopMNviFp25UsmWt
Preview: pubmed: "Journal of biomecha...

pubmed: "Journal of biomecha...



NCBI: db=pubmed; Term=("Journal of biomechanics"[Jour])



 



A benchtop biorobotic platform for in vitro observation of muscle-tendon dynamics with parallel mechanical assistance from an elastic exoskeleton.
Related Articles

A benchtop biorobotic platform for in vitro observation of muscle-tendon dynamics with parallel mechanical assistance from an elastic exoskeleton.

J Biomech. 2017 Mar 21;:

Authors: Robertson BD, Vadakkeveedu S, Sawicki GS

Abstract
We present a novel biorobotic framework comprised of a biological muscle-tendon unit (MTU) mechanically coupled to a feedback controlled robotic environment simulation that mimics in vivo inertial/gravitational loading and mechanical assistance from a parallel elastic exoskeleton. Using this system, we applied select combinations of biological muscle activation (modulated with rate-coded direct neural stimulation) and parallel elastic assistance (applied via closed-loop mechanical environment simulation) hypothesized to mimic human behavior based on previously published modeling studies. These conditions resulted in constant system-level force-length dynamics (i.e., stiffness), reduced biological loads, increased muscle excursion, and constant muscle average positive power output-all consistent with laboratory experiments on intact humans during exoskeleton assisted hopping. Mechanical assistance led to reduced estimated metabolic cost and MTU apparent efficiency, but increased apparent efficiency for the MTU+Exo system as a whole. Findings from this study suggest that the increased natural resonant frequency of the artificially stiffened MTU+Exo system, along with invariant movement frequencies, may underlie observed limits on the benefits of exoskeleton assistance. Our novel approach demonstrates that it is possible to capture the salient features of human locomotion with exoskeleton assistance in an isolated muscle-tendon preparation, and introduces a powerful new tool for detailed, direct examination of how assistive devices affect muscle-level neuromechanics and energetics.

PMID: 28431748 [PubMed - as supplied by publisher]




Effects of vibration training in reducing risk of slip-related falls among young adults with obesity.
Related Articles

Effects of vibration training in reducing risk of slip-related falls among young adults with obesity.

J Biomech. 2017 Apr 09;:

Authors: Yang F, Munoz J, Han LZ, Yang F

Abstract
This study examined the effects of controlled whole-body vibration training on reducing risk of slip-related falls in people with obesity. Twenty-three young adults with obesity were randomly assigned into either the vibration or placebo group. The vibration and placebo groups respectively received 6-week vibration and placebo training on a side-alternating vibration platform. Before and after the training, the isometric knee extensors strength capacity was measured for the two groups. Both groups were also exposed to a standardized slip induced by a treadmill during gait prior to and following the training. Dynamic stability and fall incidences responding to the slip were also assessed. The results indicated that vibration training significantly increased the muscle strength and improved dynamic stability control at recovery touchdown after the slip occurrence. The improved dynamic stability could be resulted from the enhanced trunk segment movement control, which may be attributable to the strength increment caused by the vibration training. The decline of the fall rates from the pre-training slip to the post-training one was greater among the vibration group than the placebo group (45% vs. 25%). Vibration-based training could be a promising alternative or additional modality to active exercise-based fall prevention programs for people with obesity.

PMID: 28431747 [PubMed - as supplied by publisher]