Subscribe: ENN: Climate
http://enn.com/news/rss/globe.rss
Preview: ENN: Climate

ENN: Climate



ENN RSS News



 



NASA's CPEX Tackles a Weather Fundamental

A NASA-funded field campaign getting underway in Florida on May 25 has a real shot at improving meteorologists' ability to answer some of the most fundamental questions about weather: Where will it rain? When? How much?

Called the Convective Processes Experiment (CPEX), the campaign is using NASA's DC-8 airborne laboratory outfitted with five complementary research instruments designed and developed at NASA. The plane also will carry small sensors called dropsondes that are dropped from the plane and make measurements as they fall. Working together, the instruments will collect detailed data on wind, temperature and humidity in the air below the plane during the birth, growth and decay of convective clouds -- clouds formed by warm, moist air rising off the subtropical waters around Florida.




NASA's CPEX Tackles a Weather Fundamental

A NASA-funded field campaign getting underway in Florida on May 25 has a real shot at improving meteorologists' ability to answer some of the most fundamental questions about weather: Where will it rain? When? How much?

Called the Convective Processes Experiment (CPEX), the campaign is using NASA's DC-8 airborne laboratory outfitted with five complementary research instruments designed and developed at NASA. The plane also will carry small sensors called dropsondes that are dropped from the plane and make measurements as they fall. Working together, the instruments will collect detailed data on wind, temperature and humidity in the air below the plane during the birth, growth and decay of convective clouds -- clouds formed by warm, moist air rising off the subtropical waters around Florida.




Canadian Archaeologists Challenge the Credibility of GIS Methods to Assess the Impact of Weather on Shoreline Erosion

Although computer models of archaeological sites are commonly used to yield insights which contribute to the protection of heritage materials, scientists often question their credibility, calling for these long-term trends be 'ground truthed' in order to ensure that calculated rates of change reflect observed phenomena ‘in the field’.  This is particularly true in areas which tend to experience more pronounced and cumulative impacts of modern climate change.

A recent study by Michael J. E. O’Rourke from the University of Toronto, published in Open Archaeology, provides a new perspective on the severe impacts of escalating climate change on the heritage resources of Canadian Arctic.  Referring to the application of Geographic Information System (GIS) analytical methods in assessing the threat of shoreline erosion to archaeological sites in the Canadian Arctic, it details steps taken to review the quality of the GIS model in light of a discrepancy with rates observed during annual survey visits.




Canadian Archaeologists Challenge the Credibility of GIS Methods to Assess the Impact of Weather on Shoreline Erosion

Although computer models of archaeological sites are commonly used to yield insights which contribute to the protection of heritage materials, scientists often question their credibility, calling for these long-term trends be 'ground truthed' in order to ensure that calculated rates of change reflect observed phenomena ‘in the field’.  This is particularly true in areas which tend to experience more pronounced and cumulative impacts of modern climate change.

A recent study by Michael J. E. O’Rourke from the University of Toronto, published in Open Archaeology, provides a new perspective on the severe impacts of escalating climate change on the heritage resources of Canadian Arctic.  Referring to the application of Geographic Information System (GIS) analytical methods in assessing the threat of shoreline erosion to archaeological sites in the Canadian Arctic, it details steps taken to review the quality of the GIS model in light of a discrepancy with rates observed during annual survey visits.




In Next Decades, Frequency of Coastal Flooding Will Double Globally

The frequency and severity of coastal flooding throughout the world will increase rapidly and eventually double in frequency over the coming decades even with only moderate amounts of sea level rise, according to a new study released today in “Nature Scientific Reports.”

This increase in flooding will be greatest and most damaging in tropical regions, impairing the economies of coastal cities and the habitability of low-lying Pacific island nations. Many of the world's largest populated low-lying deltas (such as the Ganges, Indus, Yangtze, Mekong and Irrawaddy Rivers), also fall in or near this affected tropical region.




Significant groundwater loss in California's Central Valley during recent droughts

A new study from researchers at UCLA and the University of Houston reveals estimates of significant groundwater loss in California’s Central Valley during the recent drought and sparks questions of sustainability for the important agricultural area.




Climate stabilization: Planting trees cannot replace cutting CO2 emissions

Growing plants and then storing the CO2 they have taken up from the atmosphere is no viable option to counteract unmitigated emissions from fossil fuel burning, a new study shows. The plantations would need to be so large, they would eliminate most natural ecosystems or reduce food production if implemented as a late-regret option in the case of substantial failure to reduce emissions. However, growing biomass soon in well-selected places with increased irrigation or fertilization could support climate policies of rapid and strong emission cuts to achieve climate stabilization below 2 degrees Celsius.




Flat Antarctica — Land height could help explain why Antarctica is warming slower than the Arctic

Temperatures in the Arctic are increasing twice as fast as in the rest of the globe, while the Antarctic is warming at a much slower rate. A new study published in Earth System Dynamics, a journal of the European Geosciences Union, shows that land height could be a “game changer” when it comes to explaining why temperatures are rising at such different rates in the two regions.




Flat Antarctica — Land height could help explain why Antarctica is warming slower than the Arctic

Temperatures in the Arctic are increasing twice as fast as in the rest of the globe, while the Antarctic is warming at a much slower rate. A new study published in Earth System Dynamics, a journal of the European Geosciences Union, shows that land height could be a “game changer” when it comes to explaining why temperatures are rising at such different rates in the two regions.




Water Efficiency in Rural Areas is Getting Worse, Even as it Improves in Urban Centers

A nationwide analysis of water use over the past 30 years finds that there is a disconnect between rural and urban areas, with most urban areas becoming more water efficient and most rural areas becoming less and less efficient over time.




UCLA-led researchers track groundwater loss during drought in California's Central Valley

A new study by researchers from UCLA and the University of Houston reveals significant groundwater loss in California’s Central Valley during the recent drought and sparks questions of sustainability for the important agricultural area.

Researchers tracked net groundwater consumption in the Central Valley from 2002 to 2016, which included two droughts, one from 2007 to 2009 and the more severe drought from 2012 to 2016. California’s Central Valley is more than 18,000 square miles from the coast to the Sierra Nevada Mountains and is one of the largest agricultural hubs in the United States, providing more than half of the U.S. fruit, vegetable and nut crops.




UCLA-led researchers track groundwater loss during drought in California's Central Valley

A new study by researchers from UCLA and the University of Houston reveals significant groundwater loss in California’s Central Valley during the recent drought and sparks questions of sustainability for the important agricultural area.

Researchers tracked net groundwater consumption in the Central Valley from 2002 to 2016, which included two droughts, one from 2007 to 2009 and the more severe drought from 2012 to 2016. California’s Central Valley is more than 18,000 square miles from the coast to the Sierra Nevada Mountains and is one of the largest agricultural hubs in the United States, providing more than half of the U.S. fruit, vegetable and nut crops.




Earth's atmosphere more chemically reactive in cold climates

Unseen in the air around us are tiny molecules that drive the chemical cocktail of our atmosphere. As plants, animals, volcanoes, wildfires and human activities spew particles into the atmosphere, some of these molecules act as cleanup crews that remove that pollution.

The main molecules responsible for breaking down all these emissions are called oxidants. The oxygen-containing molecules, mainly ozone and hydrogen-based detergents, react with pollutants and reactive greenhouse gases, such as methane.




Earth's atmosphere more chemically reactive in cold climates

Unseen in the air around us are tiny molecules that drive the chemical cocktail of our atmosphere. As plants, animals, volcanoes, wildfires and human activities spew particles into the atmosphere, some of these molecules act as cleanup crews that remove that pollution.

The main molecules responsible for breaking down all these emissions are called oxidants. The oxygen-containing molecules, mainly ozone and hydrogen-based detergents, react with pollutants and reactive greenhouse gases, such as methane.




Scientists Study Atmospheric Waves Radiating out of Hurricanes

Researchers believe they have found a new way to monitor the intensity and location of hurricanes from hundreds of miles away by detecting atmospheric waves radiating from the centers of these powerful storms.




Extreme weather has greater impact on nature than assumed

An oystercatcher nest is washed away in a storm surge. Australian passerine birds die during a heatwave. A late frost in their breeding area kills off a group of American cliff swallows. Small tragedies that may seem unrelated, but point to the underlying long-term impact of extreme climatic events. In the special June issue of Philosophical Transactions of the Royal Society B researchers of the Netherlands Institute of Ecology (NIOO-KNAW) launch a new approach to these 'extreme' studies.




Extreme weather has greater impact on nature than assumed

An oystercatcher nest is washed away in a storm surge. Australian passerine birds die during a heatwave. A late frost in their breeding area kills off a group of American cliff swallows. Small tragedies that may seem unrelated, but point to the underlying long-term impact of extreme climatic events. In the special June issue of Philosophical Transactions of the Royal Society B researchers of the Netherlands Institute of Ecology (NIOO-KNAW) launch a new approach to these 'extreme' studies.




Varied increases in extreme rainfall with global warming

A new study by researchers from MIT and the Swiss Federal Institute of Technology in Zurich shows that the most extreme rain events in most regions of the world will increase in intensity by 3 to 15 percent, depending on region, for every degree Celsius that the planet warms.




Wild Weather and Climate Change: Scientists Are Unraveling the Links

Southeast Australia just had its hottest summer on record: temperatures in some areas hit 35 degrees C (95 degrees F) more than 50 days in a row. And climate change, researchers with the World Weather Attribution project have been able to say, was probably to blame. Average temperatures like those in the 2016/17 Australian summer are now 50 times more likely than before global warming began.




Wild Weather and Climate Change: Scientists Are Unraveling the Links

Southeast Australia just had its hottest summer on record: temperatures in some areas hit 35 degrees C (95 degrees F) more than 50 days in a row. And climate change, researchers with the World Weather Attribution project have been able to say, was probably to blame. Average temperatures like those in the 2016/17 Australian summer are now 50 times more likely than before global warming began.




Migratory birds bumped off schedule as climate change shifts spring

New research shows climate change is altering the delicate seasonal clock that North American migratory songbirds rely on to successfully mate and raise healthy offspring, setting in motion a domino effect that could threaten the survival of many familiar backyard bird species.




Migratory birds bumped off schedule as climate change shifts spring

New research shows climate change is altering the delicate seasonal clock that North American migratory songbirds rely on to successfully mate and raise healthy offspring, setting in motion a domino effect that could threaten the survival of many familiar backyard bird species.




Understanding changes in extreme precipitation

Most climate scientists agree that heavy rainfall will become even more extreme and frequent in a warmer climate. This is because warm air can hold more moisture than cold air, resulting in heavier rainfall.

However, the involved mechanisms are complex and the increase in extreme precipitation varies in space, as noted by Stephan Pfahl, climate scientist at ETH Zurich and lead author of a paper just published in the journal Nature Climate Change: “The level of atmospheric moisture is just one factor influencing the distribution and intensity of extreme precipitation. Other factors also play a key role – especially when it comes to regional variability.”




Understanding changes in extreme precipitation

Most climate scientists agree that heavy rainfall will become even more extreme and frequent in a warmer climate. This is because warm air can hold more moisture than cold air, resulting in heavier rainfall.

However, the involved mechanisms are complex and the increase in extreme precipitation varies in space, as noted by Stephan Pfahl, climate scientist at ETH Zurich and lead author of a paper just published in the journal Nature Climate Change: “The level of atmospheric moisture is just one factor influencing the distribution and intensity of extreme precipitation. Other factors also play a key role – especially when it comes to regional variability.”




Research finds spike in dust storms in American Southwest driven by ocean changes

People living in the American Southwest have experienced a dramatic increase in windblown dust storms in the last two decades, likely driven by large-scale changes in sea surface temperature in the Pacific Ocean drying the region’s soil, according to new NOAA-led research.

With the increase in dust storms, scientists have also documented a spike in Valley fever, an infectious disease caught by inhaling a soil-dwelling fungus found primarily in the Southwest.