Subscribe: Journal of Synchrotron Radiation
http://journals.iucr.org/s/rss10.xml
Added By: Feedage Forager Feedage Grade B rated
Language: English
Tags:
beam  beamline  crystal  damage  data  diffraction  experiments  high  imaging  radiation damage  radiation  ray  synchrotron 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: Journal of Synchrotron Radiation

Journal of Synchrotron Radiation



Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehen



Published: 2017-01-01

 



X-ray radiation damage to biological macromolecules: further insights

2017-01-01

Despite significant progress made over more than 15 years of research, structural biologists are still grappling with the issue of radiation damage suffered by macromolecular crystals which is induced by the resultant radiation chemistry occurring during X-ray diffraction experiments. Further insights into these effects and the possible mitigation strategies for use in both diffraction and SAXS experiments are given in eight papers in this volume. In particular, damage during experimental phasing is addressed, scavengers for SAXS experiments are investigated, microcrystals are imaged, data collection strategies are optimized, specific damage to tyrosine residues is reexamined, and room temperature conformational heterogeneity as a function of dose is explored. The brief summary below puts these papers into perspective relative to other ongoing radiation damage research on macromolecules.



OH cleavage from tyrosine: debunking a myth

2017-01-01

During macromolecular X-ray crystallography experiments, protein crystals held at 100 K have been widely reported to exhibit reproducible bond scission events at doses on the order of several MGy. With the objective to mitigate the impact of radiation damage events on valid structure determination, it is essential to correctly understand the radiation chemistry mechanisms at play. OH-cleavage from tyrosine residues is regularly cited as amongst the most available damage pathways in protein crystals at 100 K, despite a lack of widespread reports of this phenomenon in protein crystal radiation damage studies. Furthermore, no clear mechanism for phenolic C—O bond cleavage in tyrosine has been reported, with the tyrosyl radical known to be relatively robust and long-lived in both aqueous solutions and the solid state. Here, the initial findings of Tyr –OH group damage in a myrosinase protein crystal have been reviewed. Consistent with that study, at increasing doses, clear electron density loss was detectable local to Tyr –OH groups. A systematic investigation performed on a range of protein crystal damage series deposited in the Protein Data Bank has established that Tyr –OH electron density loss is not generally a dominant damage pathway in protein crystals at 100 K. Full Tyr aromatic ring displacement is here proposed to account for instances of observable Tyr –OH electron density loss, with the original myrosinase data shown to be consistent with such a damage model. Systematic analysis of the effects of other environmental factors, including solvent accessibility and proximity to disulfide bonds or hydrogen bond interactions, is also presented. Residues in known active sites showed enhanced sensitivity to radiation-induced disordering, as has previously been reported.



Identification of the point of diminishing returns in high-multiplicity data collection for sulfur SAD phasing

2017-01-01

High-quality high-multiplicity X-ray diffraction data were collected on five different crystals of thaumatin using a homogeneous-profile X-ray beam at E = 8 keV to investigate the counteracting effects of increased multiplicity and increased radiation damage on the quality of anomalous diffraction data collected on macromolecular crystals. By comparing sulfur substructures obtained from subsets of the data selected as a function of absorbed X-ray dose with sulfur positions in the respective refined reference structures, the doses at which the highest quality of anomalous differences could be obtained were identified for the five crystals. A statistic σ{ΔF}D, calculated as the width σ of the normalized distribution of a set {ΔF} of anomalous differences collected at a dose D, is suggested as a measure of anomalous data quality as a function of dose. An empirical rule is proposed to identify the dose at which the gains in data quality due to increased multiplicity are outbalanced by the losses due to decreases in signal-to-noise as a consequence of radiation damage. Identifying this point of diminishing returns allows the optimization of the choice of data collection parameters and the selection of data to be used in subsequent crystal structure determination steps.



Development of a dose-limiting data collection strategy for serial synchrotron rotation crystallography

2017-01-01

Serial crystallography, in which single-shot diffraction images are collected, has great potential for protein microcrystallography. Although serial femtosecond crystallography (SFX) has been successfully demonstrated, limited beam time prevents its routine use. Inspired by SFX, serial synchrotron crystallography (SSX) has been investigated at synchrotron macromolecular crystallography beamlines. Unlike SFX, the longer exposure time of milliseconds to seconds commonly used in SSX causes radiation damage. However, in SSX, crystals can be rotated during the exposure, which can achieve efficient coverage of the reciprocal space. In this study, mercury single-wavelength anomalous diffraction (Hg-SAD) phasing of the luciferin regenerating enzyme (LRE) was performed using serial synchrotron rotation crystallography. The advantages of rotation and influence of dose on the data collected were evaluated. The results showed that sample rotation was effective for accurate data collection, and the optimum helical rotation step depended on multiple factors such as multiplicity and partiality of reflections, exposure time per rotation angle and the contribution from background scattering. For the LRE microcrystals, 0.25° was the best rotation step for the achievable resolution limit, whereas a rotation step larger than or equal to 1° was favorable for Hg-SAD phasing. Although an accumulated dose beyond 1.1 MGy caused specific damage at the Hg site, increases in resolution and anomalous signal were observed up to 3.4 MGy because of a higher signal-to-noise ratio.



Comparison of helical scan and standard rotation methods in single-crystal X-ray data collection strategies

2017-01-01

X-ray radiation in macromolecular crystallography can chemically alter the biological material and deteriorate the integrity of the crystal lattice with concomitant loss of resolution. Typical alterations include decarboxylation of glutamic and aspartic residues, breaking of disulfide bonds and the reduction of metal centres. Helical scans add a small translation to the crystal in the rotation method, so that for every image the crystal is shifted to expose a fresh part. On beamline PROXIMA 2A at Synchrotron SOLEIL, this procedure has been tested with various parameters in an attempt to understand how to mitigate the effects of radiation damage. Here, the strategies used and the crystallographic metrics for various scenarios are reported. Among these, the loss of bromine from bromophenyl moieties appears to be a useful monitor of radiation damage as the carbon–bromine bond is very sensitive to X-ray irradiation. Two cases are focused on where helical scans are shown to be superior in obtaining meaningful data compared with conventional methods. In one case the initial resolution of the crystal is extended over time, and in the second case the anomalous signal is preserved to provide greater effective multiplicity and easier phasing.



Uridine as a new scavenger for synchrotron-based structural biology techniques

2017-01-01

Macromolecular crystallography (MX) and small-angle X-ray scattering (SAXS) studies on proteins at synchrotron light sources are commonly limited by the structural damage produced by the intense X-ray beam. Several effects, such as aggregation in protein solutions and global and site-specific damage in crystals, reduce the data quality or even introduce artefacts that can result in a biologically misguiding structure. One strategy to reduce these negative effects is the inclusion of an additive in the buffer solution to act as a free radical scavenger. Here the properties of uridine as a scavenger for both SAXS and MX experiments on lysozyme at room temperature are examined. In MX experiments, upon addition of uridine at 1 M, the critical dose D1/2 is increased by a factor of ∼1.7, a value similar to that obtained in the presence of the most commonly used scavengers such as ascorbate and sodium nitrate. Other figures of merit to assess radiation damage show a similar trend. In SAXS experiments, the scavenging effect of 40 mM uridine is similar to that of 5% v/v glycerol, and greater than 2 mM DTT and 1 mM ascorbic acid. In all cases, the protective effect of uridine is proportional to its concentration.



Development of tools to automate quantitative analysis of radiation damage in SAXS experiments

2017-01-01

Biological small-angle X-ray scattering (SAXS) is an increasingly popular technique used to obtain nanoscale structural information on macromolecules in solution. However, radiation damage to the samples limits the amount of useful data that can be collected from a single sample. In contrast to the extensive analytical resources available for macromolecular crystallography (MX), there are relatively few tools to quantitate radiation damage for SAXS, some of which require a significant level of manual characterization, with the potential of leading to conflicting results from different studies. Here, computational tools have been developed to automate and standardize radiation damage analysis for SAXS data. RADDOSE-3D, a dose calculation software utility originally written for MX experiments, has been extended to account for the cylindrical geometry of the capillary tube, the liquid composition of the sample and the attenuation of the beam by the capillary material to allow doses to be calculated for many SAXS experiments. Furthermore, a library has been written to visualize and explore the pairwise similarity of frames. The calculated dose for the frame at which three subsequent frames are determined to be dissimilar is defined as the radiation damage onset threshold (RDOT). Analysis of RDOTs has been used to compare the efficacy of radioprotectant compounds to extend the useful lifetime of SAXS samples. Comparison of the RDOTs shows that, for radioprotectant compounds at 5 and 10 mM concentration, glycerol is the most effective compound. However, at 1 and 2 mM concentrations, dithiothreitol (DTT) appears to be most effective. Our newly developed visualization library contains methods that highlight the unusual radiation damage results given by SAXS data collected using higher concentrations of DTT: these observations should pave the way to the development of more sophisticated frame merging strategies.



Conformational variation of proteins at room temperature is not dominated by radiation damage

2017-01-01

Protein crystallography data collection at synchrotrons is routinely carried out at cryogenic temperatures to mitigate radiation damage. Although damage still takes place at 100 K and below, the immobilization of free radicals increases the lifetime of the crystals by approximately 100-fold. Recent studies have shown that flash-cooling decreases the heterogeneity of the conformational ensemble and can hide important functional mechanisms from observation. These discoveries have motivated increasing numbers of experiments to be carried out at room temperature. However, the trade-offs between increased risk of radiation damage and increased observation of alternative conformations at room temperature relative to cryogenic temperature have not been examined. A considerable amount of effort has previously been spent studying radiation damage at cryo-temperatures, but the relevance of these studies to room temperature diffraction is not well understood. Here, the effects of radiation damage on the conformational landscapes of three different proteins (T. danielli thaumatin, hen egg-white lysozyme and human cyclophilin A) at room (278 K) and cryogenic (100 K) temperatures are investigated. Increasingly damaged datasets were collected at each temperature, up to a maximum dose of the order of 107 Gy at 100 K and 105 Gy at 278 K. Although it was not possible to discern a clear trend between damage and multiple conformations at either temperature, it was observed that disorder, monitored by B-factor-dependent crystallographic order parameters, increased with higher absorbed dose for the three proteins at 100 K. At 278 K, however, the total increase in this disorder was only statistically significant for thaumatin. A correlation between specific radiation damage affecting side chains and the amount of disorder was not observed. This analysis suggests that elevated conformational heterogeneity in crystal structures at room temperature is observed despite radiation damage, and not as a result thereof.



Bragg coherent diffraction imaging and metrics for radiation damage in protein micro-crystallography

2017-01-01

The proliferation of extremely intense synchrotron sources has enabled ever higher-resolution structures to be obtained using data collected from smaller and often more imperfect biological crystals (Helliwell, 1984). Synchrotron beamlines now exist that are capable of measuring data from single crystals that are just a few micrometres in size. This provides renewed motivation to study and understand the radiation damage behaviour of small protein crystals. Reciprocal-space mapping and Bragg coherent diffractive imaging experiments have been performed on cryo-cooled microcrystals of hen egg-white lysozyme as they undergo radiation damage. Several well established metrics, such as intensity-loss and lattice expansion, are applied to the diffraction data and the results are compared with several new metrics that can be extracted from the coherent imaging experiments. Individually some of these metrics are inconclusive. However, combining metrics, the results suggest that radiation damage behaviour in protein micro-crystals differs from that of larger protein crystals and may allow them to continue to diffract for longer. A possible mechanism to account for these observations is proposed.



Design of a prototype split-and-delay unit for XFEL pulses, and their evaluation by synchrotron radiation X-rays

2017-01-01

A prototype split-and-delay unit (SDU) for X-ray free-electron laser (XFEL) pulses is proposed based on the Graeff–Bonse four-Bragg-reflection interferometer by installing 12.5° slopes. The SDU can continuously provide a delay time from approximately −20 to 40 ps with a resolution of less than 26 fs. Because the SDU was constructed from a monolithic silicon crystal, alignment is straightforward. The obtained thoroughputs of the SDU reached 0.7% at 7.46 keV and 0.02% at 14.92 keV. The tunability of the delay time using the proposed SDU was demonstrated by finding the interference effects of the split X-rays, and the time resolution of the proposed SDU was evaluated using the width of the interference pattern recorded on the X-ray charge-coupled device camera by changing the energy, i.e. longitudinal coherence length, of the incident X-rays. It is expected that the proposed SDU will be applicable to XFEL experiments using delay times from tens of femtoseconds to tens of picoseconds, e.g. intensity correlation measurements.



Linear parabolic single-crystal diamond refractive lenses for synchrotron X-ray sources

2017-01-01

Linear parabolic diamond refractive lenses are presented, designed to withstand high thermal and radiation loads coming from upgraded accelerator X-ray sources. Lenses were manufactured by picosecond laser treatment of a high-quality single-crystal synthetic diamond. Twelve lenses with radius of curvature at parabola apex R = 200 µm, geometrical aperture A = 900 µm and length L = 1.5 mm were stacked as a compound refractive lens and tested at the ESRF ID06 beamline. A focal spot of size 2.2 µm and a gain of 20 were measured at 8 keV. The lens profile and surface quality were estimated by grating interferometry and X-ray radiography. In addition, the influence of X-ray glitches on the focusing properties of the compound refractive lens were studied.



Quantitative characterization of the X-ray beam at the Australian Synchrotron Imaging and Medical Beamline (IMBL)

2017-01-01

A critical early phase for any synchrotron beamline involves detailed testing, characterization and commissioning; this is especially true of a beamline as ambitious and complex as the Imaging & Medical Beamline (IMBL) at the Australian Synchrotron. IMBL staff and expert users have been performing precise experiments aimed at quantitative characterization of the primary polychromatic and monochromatic X-ray beams, with particular emphasis placed on the wiggler insertion devices (IDs), the primary-slit system and any in vacuo and ex vacuo filters. The findings from these studies will be described herein. These results will benefit IMBL and other users in the future, especially those for whom detailed knowledge of the X-ray beam spectrum (or `quality') and flux density is important. This information is critical for radiotherapy and radiobiology users, who ultimately need to know (to better than 5%) what X-ray dose or dose rate is being delivered to their samples. Various correction factors associated with ionization-chamber (IC) dosimetry have been accounted for, e.g. ion recombination, electron-loss effects. A new and innovative approach has been developed in this regard, which can provide confirmation of key parameter values such as the magnetic field in the wiggler and the effective thickness of key filters. IMBL commenced operation in December 2008 with an Advanced Photon Source (APS) wiggler as the (interim) ID. A superconducting multi-pole wiggler was installed and operational in January 2013. Results are obtained for both of these IDs and useful comparisons are made. A comprehensive model of the IMBL has been developed, embodied in a new computer program named spec.exe, which has been validated against a variety of experimental measurements. Having demonstrated the reliability and robustness of the model, it is then possible to use it in a practical and predictive manner. It is hoped that spec.exe will prove to be a useful resource for synchrotron science in general, and for hard X-ray beamlines, whether they are based on bending magnets or insertion devices, in particular. In due course, it is planned to make spec.exe freely available to other synchrotron scientists.



Generation of apodized X-ray illumination and its application to scanning and diffraction microscopy

2017-01-01

X-ray science has greatly benefited from the progress in X-ray optics. Advances in the design and the manufacturing techniques of X-ray optics are key to the success of various microscopic and spectroscopic techniques practiced today. Here the generation of apodized X-ray illumination using a two-stage deformable Kirkpatrick–Baez mirror system is presented. Such apodized illumination is marked by the suppression of the side-lobe intensities of the focused beam. Thus generated apodized illumination was employed to improve the image quality in scanning X-ray fluorescence microscopy. Imaging of a non-isolated object by coherent X-ray diffractive imaging with apodized illumination in a non-scanning mode is also presented.



X-ray grating interferometer for in situ and at-wavelength wavefront metrology

2017-01-01

A wavefront metrology setup based on the X-ray grating interferometry technique for spatially resolved, quantitative, in situ and at-wavelength measurements of the wavefront at synchrotron radiation and hard X-ray free-electron laser beamlines is reported. Indeed, the ever-increasing demands on the optical components to preserve the wavefront shape and the coherence of the delivered X-ray beam call for more and more sensitive diagnostic instruments. Thanks to its angular sensitivity, X-ray grating interferometry has been established in recent years as an adequate wavefront-sensing technique for quantitatively assessing the quality of the X-ray wavefront under working conditions and hence for the in situ investigation of X-ray optical elements. In order to characterize the optical elements at any given beamline by measuring the aberrations introduced in the wavefront, a transportable X-ray grating interferometry setup was realised at the Swiss Light Source (SLS). The instrument, which is expected to be a valuable tool for investigating the quality of the X-ray beam delivered at an endstation, will be described hereafter in terms of the hardware setup and the related data analysis procedure. Several exemplary experiments performed at the X05DA Optics beamline of the SLS will be presented.



Bunch-by-bunch position measurement and analysis at PLS-II

2017-01-01

A bunch-by-bunch measurement system has been developed at Pohang Light Source II. The system consists of a four-channel button pick-up, 20 GHz sampling oscilloscope and an 800 MHz low-pass digital filter. Upon measuring a bunch-by-bunch spatio-temporal beam motion matrix over many turns, singular-value decomposition analysis is used to reveal the dominant coupled-bunch modes. The system can diagnose injection oscillations due to kicker errors and the effect of resistive-wall impedance that gives rise to instability during operation.



Design of a multilayer-based collimated plane-grating monochromator for tender X-ray range

2017-01-01

Collimated plane-grating monochromators (cPGMs), consisting of a plane mirror and plane diffraction grating, are essential optics in synchrotron radiation sources for their remarkable flexibility and good optical characteristics in the soft X-ray region. However, the poor energy transport efficiency of a conventional cPGM (single-layer-coated) degrades the source intensity and leaves reduced flux at the sample, especially for the tender X-ray range (1–4 keV) that covers a large number of K- and L-edges of medium-Z elements, and M-edges of high-Z elements. To overcome this limitation, the use of a multilayer-based cPGM is proposed, combining a multilayer-coated plane mirror with blazed multilayer gratings. With this combination, the effective efficiency of cPGMs can be increased by an order of magnitude compared with the conventional single-layer cPGMs. In addition, higher resolving power can be achieved with improved efficiency by increasing the blaze angle and working at higher diffraction order.



Performance of photoelectron spin polarimeters with continuous and pulsed sources: from storage rings to free electron lasers

2017-01-01

In this work the experimental uncertainties concerning electron spin polarization (SP) under various realistic measurement conditions are theoretically derived. The accuracy of the evaluation of the SP of the photoelectron current is analysed as a function of the detector parameters and specifications, as well as of the characteristics of the photoexcitation sources. In particular, the different behaviour of single counter or twin counter detectors when the intensity fluctuations of the source are considered have been addressed, leading to a new definition of the SP detector performance. The widely used parameter called the figure of merit is shown to be inadequate for describing the efficiency of SP polarimeters, especially when they are operated with time-structured excitation sources such as free-electron lasers. Numerical simulations have been performed and yield strong implications in the choice of the detecting instruments in spin-polarization experiments, that are constrained in a limited measurement time. Our results are therefore applied to the characteristics of a wide set of state-of-the-art spectroscopy facilities all over the world, and an efficiency diagram for SP experiments is derived. These results also define new mathematical instruments for handling the correct statistics of SP measurements in the presence of source intensity fluctuations.



Dynamic X-ray diffraction sampling for protein crystal positioning

2017-01-01

A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.



Coherent X-ray beam metrology using 2D high-resolution Fresnel-diffraction analysis

2017-01-01

Direct metrology of coherent short-wavelength beamlines is important for obtaining operational beam characteristics at the experimental site. However, since beam-time limitation imposes fast metrology procedures, a multi-parametric metrology from as low as a single shot is desirable. Here a two-dimensional (2D) procedure based on high-resolution Fresnel diffraction analysis is discussed and applied, which allowed an efficient and detailed beamline characterization at the SACLA XFEL. So far, the potential of Fresnel diffraction for beamline metrology has not been fully exploited because its high-frequency fringes could be only partly resolved with ordinary pixel-limited detectors. Using the high-spatial-frequency imaging capability of an irradiated LiF crystal, 2D information of the coherence degree, beam divergence and beam quality factor M2 were retrieved from simple diffraction patterns. The developed beam metrology was validated with a laboratory reference laser, and then successfully applied at a beamline facility, in agreement with the source specifications.



Fast iterative reconstruction of data in full interior tomography

2017-01-01

This paper introduces two novel strategies for iterative reconstruction of full interior tomography (FINT) data, i.e. when the field of view is entirely inside the object support and knowledge of the object support itself or the attenuation coefficients inside specific regions of interest are not available. The first approach is based on data edge-padding. The second technique creates an intermediate virtual sinogram, which is, then, reconstructed by a standard iterative algorithm. Both strategies are validated in the framework of the alternate direction method of multipliers plug-and-play with gridding projectors that provide a speed-up of three orders of magnitude with respect to standard operators implemented in real space. The proposed methods are benchmarked on synchrotron-based X-ray tomographic microscopy datasets of mouse lung alveoli. Compared with analytical techniques, the proposed methods substantially improve the reconstruction quality for FINT underconstrained datasets, facilitating subsequent post-processing steps.



On the use of flat-fields for tomographic reconstruction

2017-01-01

Seeking for quantitative tomographic images, it is of utmost importance to limit reconstruction artifacts. Detector imperfections, inhomogeneity of the incident beam, as classically observed in synchrotron beamlines, and their variations in time are a major cause of reconstruction bias such as `ring artifacts'. The present study aims at proposing a faithful estimate of the incident beam local intensity for each acquired projection during a scan, without revisiting the process of data acquisition itself. Actual flat-fields (acquired without specimen in the beam) and sinogram borders (when the specimen is present), which are not masked during the scan, are exploited to construct a suited instantaneous detector-wide flat-field. The proposed treatment is fast and simple. Its performance is assessed on a real scan acquired at ESRF ID19 beamline. Different criteria are used including residuals, i.e. difference between projections of reconstruction and actual projections. All confirm the benefit of the proposed procedure.



Synchrotron-based phase-sensitive imaging of leaves grown from magneto-primed seeds of soybean

2017-01-01

Experiments were conducted to study the effects of static magnetic fields (SMFs) on the venation network of soybean leaves using the synchrotron-based X-ray micro-imaging technique. The seeds of soybean (Glycine max, variety JS-335) were pretreated with different SMFs from 50 to 300 mT in steps of 50 mT for 1 h. The phase-contrast images obtained showed that, as the strength of the SMF increased, the area, width of the midrib, area of the midrib and minor vein of the middle leaflets of third trifoliate leaves also increased up to the SMF strength of 200 mT (1 h) and decreased thereafter. Quantification of the major conducting vein also showed the differences in the major and minor vein structures of the soybean leaves as compared with control leaves. Further, the phase-retrieval technique has been applied to make the segmentation process easy and to quantify the major and minor veins in the venation network. The width and area of midrib enhancement by pre-treatment with SMF implies an enhancement in the uptake of water, which in turn causes an increased rate of photosynthesis and stomatal conductance.



Development of synchrotron X-ray micro-tomography under extreme conditions of pressure and temperature

2017-01-01

X-ray tomography is a non-destructive three-dimensional imaging/microanalysis technique selective to a wide range of properties such as density, chemical composition, chemical states and crystallographic structure with extremely high sensitivity and spatial resolution. Here the development of in situ high-pressure high-temperature micro-tomography using a rotating module for the Paris–Edinburgh cell combined with synchrotron radiation is described. By rotating the sample chamber by 360°, the limited angular aperture of ordinary high-pressure cells is surmounted. Such a non-destructive high-resolution probe provides three-dimensional insight on the morphological and structural evolution of crystalline as well as amorphous phases during high pressure and temperature treatment. To demonstrate the potentials of this new experimental technique the compression behavior of a basalt glass is investigated by X-ray absorption tomography, and diffraction/scattering tomography imaging of the structural changes during the polymerization of C60 molecules under pressure is performed. Small size and weight of the loading frame and rotating module means that this apparatus is portable, and can be readily installed on most synchrotron facilities to take advantage of the diversity of three-dimensional imaging techniques available at beamlines. This experimental breakthrough should open new ways for in situ imaging of materials under extreme pressure–temperature–stress conditions, impacting diverse areas in physics, chemistry, geology or materials sciences.



Automatic processing of multimodal tomography datasets

2017-01-01

With the development of fourth-generation high-brightness synchrotrons on the horizon, the already large volume of data that will be collected on imaging and mapping beamlines is set to increase by orders of magnitude. As such, an easy and accessible way of dealing with such large datasets as quickly as possible is required in order to be able to address the core scientific problems during the experimental data collection. Savu is an accessible and flexible big data processing framework that is able to deal with both the variety and the volume of data of multimodal and multidimensional scientific datasets output such as those from chemical tomography experiments on the I18 microfocus scanning beamline at Diamond Light Source.



A practical local tomography reconstruction algorithm based on a known sub-region

2017-01-01

A new method to reconstruct data acquired in a local tomography setup is proposed. This method uses an initial reconstruction and refines it by correcting the low-frequency artifacts, known as the cupping effect. A basis of Gaussian functions is used to correct the initial reconstruction. The coefficients of this basis are found by optimizing iteratively a fidelity term under the constraint of a known sub-region. Using a coarse basis reduces the degrees of freedom of the problem while actually correcting the cupping effect. Simulations show that the known region constraint yields an unbiased reconstruction, in accordance with uniqueness theorems stated in local tomography.



Direct tomography imaging for inelastic X-ray scattering experiments at high pressure

2017-01-01

A method to separate the non-resonant inelastic X-ray scattering signal of a micro-metric sample contained inside a diamond anvil cell (DAC) from the signal originating from the high-pressure sample environment is described. Especially for high-pressure experiments, the parasitic signal originating from the diamond anvils, the gasket and/or the pressure medium can easily obscure the sample signal or even render the experiment impossible. Another severe complication for high-pressure non-resonant inelastic X-ray measurements, such as X-ray Raman scattering spectroscopy, can be the proximity of the desired sample edge energy to an absorption edge energy of elements constituting the DAC. It is shown that recording the scattered signal in a spatially resolved manner allows these problems to be overcome by separating the sample signal from the spurious scattering of the DAC without constraints on the solid angle of detection. Furthermore, simple machine learning algorithms facilitate finding the corresponding detector pixels that record the sample signal. The outlined experimental technique and data analysis approach are demonstrated by presenting spectra of the Si L2,3-edge and O K-edge of compressed α-quartz. The spectra are of unprecedented quality and both the O K-edge and the Si L2,3-edge clearly show the existence of a pressure-induced phase transition between 10 and 24 GPa.



Miniature diamond anvils for X-ray Raman scattering spectroscopy experiments at high pressure

2017-01-01

X-ray Raman scattering (XRS) spectroscopy is an inelastic scattering method that uses hard X-rays of the order of 10 keV to measure energy-loss spectra at absorption edges of light elements (Si, Mg, O etc.), with an energy resolution below 1 eV. The high-energy X-rays employed with this technique can penetrate thick or dense sample containers such as the diamond anvils employed in high-pressure cells. Here, we describe the use of custom-made conical miniature diamond anvils of less than 500 µm thickness which allow pressure generation of up to 70 GPa. This set-up overcomes the limitations of the XRS technique in very high-pressure measurements (>10 GPa) by drastically improving the signal-to-noise ratio. The conical shape of the base of the diamonds gives a 70° opening angle, enabling measurements in both low- and high-angle scattering geometry. This reduction of the diamond thickness to one-third of the classical diamond anvils considerably lowers the attenuation of the incoming and the scattered beams and thus enhances the signal-to-noise ratio significantly. A further improvement of the signal-to-background ratio is obtained by a recess of ∼20 µm that is milled in the culet of the miniature anvils. This recess increases the sample scattering volume by a factor of three at a pressure of 60 GPa. Examples of X-ray Raman spectra collected at the O K-edge and Si L-edge in SiO2 glass at high pressures up to 47 GPa demonstrate the significant improvement and potential for spectroscopic studies of low-Z elements at high pressure.



Determination of copper nanoparticle size distributions with total reflection X-ray fluorescence spectroscopy

2017-01-01

Total reflection X-ray fluorescence (TXRF) analysis is extensively used by the semiconductor industry for measuring trace metal contamination on silicon surfaces. In addition to determining the quantity of impurities on a surface, TXRF can reveal information about the vertical distribution of contaminants by measuring the fluorescence signal as a function of the angle of incidence. In this study, two samples were intentionally contaminated with copper in non-deoxygenated and deoxygenated ultrapure water (UPW) resulting in impurity profiles that were either atomically dispersed in a thin film or particle-like, respectively. The concentration profile of the samples immersed into deoxygenated UPW was calculated using a theoretical concentration profile representative of particles, yielding a mean particle height of 16.1 nm. However, the resulting theoretical profile suggested that a distribution of particle heights exists on the surface. The fit of the angular distribution data was further refined by minimizing the residual error of a least-squares fit employing a model with a Gaussian distribution of particle heights about the mean height. The presence of a height distribution was also confirmed with atomic force microscopy measurements.



X-ray fluorescence at nanoscale resolution for multicomponent layered structures: a solar cell case study

2017-01-01

The study of a multilayered and multicomponent system by spatially resolved X-ray fluorescence microscopy poses unique challenges in achieving accurate quantification of elemental distributions. This is particularly true for the quantification of materials with high X-ray attenuation coefficients, depth-dependent composition variations and thickness variations. A widely applicable procedure for use after spectrum fitting and quantification is described. This procedure corrects the elemental distribution from the measured fluorescence signal, taking into account attenuation of the incident beam and generated fluorescence from multiple layers, and accounts for sample thickness variations. Deriving from Beer–Lambert's law, formulae are presented in a general integral form and numerically applicable framework. The procedure is applied using experimental data from a solar cell with a Cu(In,Ga)Se2 absorber layer, measured at two separate synchrotron beamlines with varied measurement geometries. This example shows the importance of these corrections in real material systems, which can change the interpretation of the measured distributions dramatically.



1s2p resonant inelastic X-ray scattering combined dipole and quadrupole analysis method

2017-01-01

In this study an analysis strategy towards using the resonant inelastic X-ray scattering (RIXS) technique more effectively compared with X-ray absorption spectroscopy (XAS) is presented. In particular, the question of when RIXS brings extra information compared with XAS is addressed. To answer this question the RIXS plane is analysed using two models: (i) an exciton model and (ii) a continuum model. The continuum model describes the dipole pre-edge excitations while the exciton model describes the quadrupole excitations. Applying our approach to the experimental 1s2p RIXS planes of VO2 and TiO2, it is shown that only in the case of quadrupole excitations being present is additional information gained by RIXS compared with XAS. Combining this knowledge with methods to calculate the dipole contribution in XAS measurements gives scientists the opportunity to plan more effective experiments.



An endstation for resonant inelastic X-ray scattering studies of solid and liquid samples

2017-01-01

A novel experimental setup is presented for resonant inelastic X-ray scattering investigations of solid and liquid samples in the soft X-ray region for studying the complex electronic configuration of (bio)chemical systems. The uniqueness of the apparatus is its high flexibility combined with optimal energy resolution and energy range ratio. The apparatus enables investigation of chemical analyses, which reflects the chemical imprints. The endstation is composed of a main sample chamber, a sample holder for either solid or liquid jet delivery system, and a soft X-ray grating spectrometer for 210–1250 eV with a resolving power of ∼1000. It combines for the first time liquid jet technology with a soft X-ray spectrometer based on the variable line spacing principle. This setup was commissioned at the soft X-ray beamline P04 at PETRA III of the Deutsches Elektronen-Synchrotron in Hamburg which is currently the most brilliant storage-ring-based X-ray radiation source in the world. The first results of liquid and solid samples show that this setup allows the detection of photons across an energy range of ∼300 eV. This covers simultaneously the emission lines of life-important elements like carbon, nitrogen and oxygen in a shot-based procedure.



Synchrotron radiation micro X-ray fluorescence spectroscopy of thin structures in bone samples: comparison of confocal and color X-ray camera setups

2017-01-01

In the quest for finding the ideal synchrotron-radiation-induced imaging method for the investigation of trace element distributions in human bone samples, experiments were performed using both a scanning confocal synchrotron radiation micro X-ray fluorescence (SR-µXRF) (FLUO beamline at ANKA) setup and a full-field color X-ray camera (BAMline at BESSY-II) setup. As zinc is a trace element of special interest in bone, the setups were optimized for its detection. The setups were compared with respect to count rate, required measurement time and spatial resolution. It was demonstrated that the ideal method depends on the element of interest. Although for Ca (a major constituent of the bone with a low energy of 3.69 keV for its Kα XRF line) the color X-ray camera provided a higher resolution in the plane, for Zn (a trace element in bone) only the confocal SR-µXRF setup was able to sufficiently image the distribution.



Analytic expressions for the angular and the spectral fluxes at Compton X-ray sources

2017-01-01

The goal of this paper is to express simply the number of photons impinging on a target in the framework of accelerator-based Compton X-ray sources. From the basic kinematics of Compton sources, analytic formulas for the angular and the spectral fluxes are established as functions of the energy spread or/and the angular divergence of the electron and the laser beams. Their detailed predictions are compared with Monte Carlo simulations. These analytic expressions allow one to compute in a simple and precise way the X-ray flux in a given angular acceptance and a given energy bandwidth, knowing the characteristics of the incoming beams.



P13, the EMBL macromolecular crystallography beamline at the low-emittance PETRA III ring for high- and low-energy phasing with variable beam focusing

2017-01-01

The macromolecular crystallography P13 beamline is part of the European Molecular Biology Laboratory Integrated Facility for Structural Biology at PETRA III (DESY, Hamburg, Germany) and has been in user operation since mid-2013. P13 is tunable across the energy range from 4 to 17.5 keV to support crystallographic data acquisition exploiting a wide range of elemental absorption edges for experimental phase determination. An adaptive Kirkpatrick–Baez focusing system provides an X-ray beam with a high photon flux and tunable focus size to adapt to diverse experimental situations. Data collections at energies as low as 4 keV (λ = 3.1 Å) are possible due to a beamline design minimizing background and maximizing photon flux particularly at low energy (up to 1011 photons s−1 at 4 keV), a custom calibration of the PILATUS 6M-F detector for use at low energies, and the availability of a helium path. At high energies, the high photon flux (5.4 × 1011 photons s−1 at 17.5 keV) combined with a large area detector mounted on a 2θ arm allows data collection to sub-atomic resolution (0.55 Å). A peak flux of about 8.0 × 1012 photons s−1 is reached at 11 keV. Automated sample mounting is available by means of the robotic sample changer `MARVIN' with a dewar capacity of 160 samples. In close proximity to the beamline, laboratories have been set up for sample preparation and characterization; a laboratory specifically equipped for on-site heavy atom derivatization with a library of more than 150 compounds is available to beamline users.



Medium-energy microprobe station at the SXRMB of the CLS

2017-01-01

Micro-XAFS and chemical imaging techniques have been widely applied for studies of heterogeneously distributed systems, mostly in hard X-ray (>5 keV) or in soft X-ray (<1.5 keV) energies. The microprobe endstation of the SXRMB (soft X-ray microcharacterization beamline) at the Canadian Light Source is optimized at the medium energy (1.7–5 keV), and it has been recently commissioned and is available for general users. The technical design and the performance (energy range, beam size and flux) of the SXRMB microprobe are presented. Examples in chemical imaging and micro-XAFS in the medium energy for important elements such as P, S and Ca for soil and biological samples are highlighted.



Protein crystallography beamline BL2S1 at the Aichi synchrotron

2017-01-01

The protein crystallography beamline BL2S1, constructed at one of the 5 T superconducting bending-magnet ports of the Aichi synchrotron, is available to users associated with academic and industrial organizations. The beamline is mainly intended for use in X-ray diffraction measurements of single-crystals of macromolecules such as proteins and nucleic acids. Diffraction measurements for crystals of other materials are also possible, such as inorganic and organic compounds. BL2S1 covers the energy range 7–17 keV (1.8–0.7 Å) with an asymmetric-cut curved single-crystal monochromator [Ge(111) or Ge(220)], and a platinum-coated Si mirror is used for vertical focusing and as a higher-order cutoff filter. The beamline is equipped with a single-axis goniometer, a CCD detector, and an open-flow cryogenic sample cooler. High-pressure protein crystallography with a diamond anvil cell can also be performed using this beamline.



The SPECIES beamline at the MAX IV Laboratory: a facility for soft X-ray RIXS and APXPS

2017-01-01

SPECIES is an undulator-based soft X-ray beamline that replaced the old I511 beamline at the MAX II storage ring. SPECIES is aimed at high-resolution ambient-pressure X-ray photoelectron spectroscopy (APXPS), near-edge X-ray absorption fine-structure (NEXAFS), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS) experiments. The beamline has two branches that use a common elliptically polarizing undulator and monochromator. The beam is switched between the two branches by changing the focusing optics after the monochromator. Both branches have separate exit slits, refocusing optics and dedicated permanent endstations. This allows very fast switching between two types of experiments and offers a unique combination of the surface-sensitive XPS and bulk-sensitive RIXS techniques both in UHV and at elevated ambient-pressure conditions on a single beamline. Another unique property of the beamline is that it reaches energies down to approximately 27 eV, which is not obtainable on other current APXPS beamlines. This allows, for instance, valence band studies under ambient-pressure conditions. In this article the main properties and performance of the beamline are presented, together with selected showcase experiments performed on the new setup.



Surface science at the PEARL beamline of the Swiss Light Source

2017-01-01

The Photo-Emission and Atomic Resolution Laboratory (PEARL) is a new soft X-ray beamline and surface science laboratory at the Swiss Light Source. PEARL is dedicated to the structural characterization of local bonding geometry at surfaces and interfaces of novel materials, in particular of molecular adsorbates, nanostructured surfaces, and surfaces of complex materials. The main experimental techniques are soft X-ray photoelectron spectroscopy, photoelectron diffraction, and scanning tunneling microscopy (STM). Photoelectron diffraction in angle-scanned mode measures bonding angles of atoms near the emitter atom, and thus allows the orientation of small molecules on a substrate to be determined. In energy scanned mode it measures the distance between the emitter and neighboring atoms; for example, between adsorbate and substrate. STM provides complementary, real-space information, and is particularly useful for comparing the sample quality with reference measurements. In this article, the key features and measured performance data of the beamline and the experimental station are presented. As scientific examples, the adsorbate–substrate distance in hexagonal boron nitride on Ni(111), surface quantum well states in a metal-organic network of dicyano-anthracene on Cu(111), and circular dichroism in the photoelectron diffraction of Cu(111) are discussed.



AI-BL1.0: a program for automatic on-line beamline optimization using the evolutionary algorithm

2017-01-01

In this report, AI-BL1.0, an open-source Labview-based program for automatic on-line beamline optimization, is presented. The optimization algorithms used in the program are Genetic Algorithm and Differential Evolution. Efficiency was improved by use of a strategy known as Observer Mode for Evolutionary Algorithm. The program was constructed and validated at the XAFCA beamline of the Singapore Synchrotron Light Source and 1W1B beamline of the Beijing Synchrotron Radiation Facility.



Current events

2017-01-01