Subscribe: Journal of Synchrotron Radiation
Added By: Feedage Forager Feedage Grade B rated
Language: English
aperture  beam  crl  footprinting  high  radiation  ray footprinting  ray  soft ray  synchrotron radiation  synchrotron  time   
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: Journal of Synchrotron Radiation

Journal of Synchrotron Radiation

Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehen

Published: 2017-04-28


Fluid dynamics analysis of a gas attenuator for X-ray FELs under high-repetition-rate operation


Newtonian fluid dynamics simulations were performed using the Navier–Stokes–Fourier formulations to elucidate the short time-scale (µs and longer) evolution of the density and temperature distributions in an argon-gas-filled attenuator for an X-ray free-electron laser under high-repetition-rate operation. Both hydrodynamic motions of the gas molecules and thermal conductions were included in a finite-volume calculation. It was found that the hydrodynamic wave motions play the primary role in creating a density depression (also known as a filament) by advectively transporting gas particles away from the X-ray laser–gas interaction region, where large pressure and temperature gradients have been built upon the initial energy deposition via X-ray photoelectric absorption and subsequent thermalization. Concurrent outward heat conduction tends to reduce the pressure in the filament core region, generating a counter gas flow to backfill the filament, but on an initially slower time scale. If the inter-pulse separation is sufficiently short so the filament cannot recover, the depth of the filament progressively increases as the trailing pulses remove additional gas particles. Since the rate of hydrodynamic removal decreases while the rate of heat conduction back flow increases as time elapses, the two competing mechanisms ultimately reach a dynamic balance, establishing a repeating pattern for each pulse cycle. By performing simulations at higher repetition rates but lower per pulse energies while maintaining a constant time-averaged power, the amplitude of the hydrodynamic motion per pulse becomes smaller, and the evolution of the temperature and density distributions approach asymptotically towards, as expected, those calculated for a continuous-wave input of the equivalent power.

Development of optical choppers for time-resolved measurements at soft X-ray synchrotron radiation beamlines


Two types of optical choppers for time-resolved measurements at synchrotron radiation soft X-ray beamlines have been developed. One type uses an air-spindle-type rotation mechanism with a two-stage differential pumping system to maintain the ultra-high vacuum of the X-ray beamline, and the other uses a magnetic bearing. Both can be installed at the soft X-ray beamlines at SPring-8, greatly improving the accessibility of pump-and-probe spectroscopy. The combination of X-ray chopper and pump-and-probe photoemission electron microscope at SPring-8 provides drastic improvements in signal-to-noise ratio and resolution compared with techniques using high-voltage gating of channel plate detectors. The choppers have the capability to be used not only at synchrotron radiation facilities but also at other types of soft X-ray and VUV beamlines.

The coherent radiation fraction of low-emittance synchrotrons


In this work the coherence properties of the synchrotron radiation beam from an X-ray undulator in a fourth-generation storage ring are analyzed. A slightly focused X-ray beam is simulated using a wavefront propagation through a non-redundant array of slits and the mutual coherence function is directly obtained and compared with the Gaussian–Schell approximation. The numerical wave propagation and the approximate analytical approaches are shown to agree qualitatively, and it is also shown that, when the coherent fraction is selected by a finite aperture before the focusing element, even achromatic focusing systems like total reflection mirrors become slightly chromatic. This effect is also well accounted for in the Gaussian–Schell model. The wavefront propagation simulation through the non-redundant array was repeated with an imperfect mirror demonstrating that, although the wavefront is distorted, its coherent length is practically unchanged.

SOLEIL shining on the solution-state structure of biomacromolecules by synchrotron X-ray footprinting at the Metrology beamline


Synchrotron X-ray footprinting complements the techniques commonly used to define the structure of molecules such as crystallography, small-angle X-ray scattering and nuclear magnetic resonance. It is remarkably useful in probing the structure and interactions of proteins with lipids, nucleic acids or with other proteins in solution, often better reflecting the in vivo state dynamics. To date, most X-ray footprinting studies have been carried out at the National Synchrotron Light Source, USA, and at the European Synchrotron Radiation Facility in Grenoble, France. This work presents X-ray footprinting of biomolecules performed for the first time at the X-ray Metrology beamline at the SOLEIL synchrotron radiation source. The installation at this beamline of a stopped-flow apparatus for sample delivery, an irradiation capillary and an automatic sample collector enabled the X-ray footprinting study of the structure of the soluble protein factor H (FH) from the human complement system as well as of the lipid-associated hydrophobic protein S3 oleosin from plant seed. Mass spectrometry analysis showed that the structural integrity of both proteins was not affected by the short exposition to the oxygen radicals produced during the irradiation. Irradiated molecules were subsequently analysed using high-resolution mass spectrometry to identify and locate oxidized amino acids. Moreover, the analyses of FH in its free state and in complex with complement C3b protein have allowed us to create a map of reactive solvent-exposed residues on the surface of FH and to observe the changes in oxidation of FH residues upon C3b binding. Studies of the solvent accessibility of the S3 oleosin show that X-ray footprinting offers also a unique approach to studying the structure of proteins embedded within membranes or lipid bodies. All the biomolecular applications reported herein demonstrate that the Metrology beamline at SOLEIL can be successfully used for synchrotron X-ray footprinting of biomolecules.

Fresnel zone plate with apodized aperture for hard X-ray Gaussian beam optics


Fresnel zone plates with apodized apertures [apodization FZPs (A-FZPs)] have been developed to realise Gaussian beam optics in the hard X-ray region. The designed zone depth of A-FZPs gradually decreases from the center to peripheral regions. Such a zone structure forms a Gaussian-like smooth-shouldered aperture function which optically behaves as an apodization filter and produces a Gaussian-like focusing spot profile. Optical properties of two types of A-FZP, i.e. a circular type and a one-dimensional type, have been evaluated by using a microbeam knife-edge scan test, and have been carefully compared with those of normal FZP optics. Advantages of using A-FZPs are introduced.

Nanofabrication and characterization of a grating-based condenser for uniform illumination with hard X-rays


In the development of full-field transmission X-ray microscopy for basic study in science and technology, a condenser capable of providing intense illumination with high uniformity and stability on tested specimens in order to achieve high-quality images is essential. The latest design of a square-shaped condenser based on diffractive gratings has demonstrated promising uniformity in illumination. This paper describes in more detail the development of such a beam shaper for hard X-rays at 10 keV with regard to its design, manufacture and optical characterization. The effect of the grating profile on the diffracted intensity has been theoretically predicted by numerical simulation using the finite-difference time-domain method. Based on this, the limitations of the grating-based condenser are discussed.

Transverse gradient in Apple-type undulators


Apple-type undulators are globally recognized as the most flexible devices for the production of variable polarized light in the soft X-ray regime, both at synchrotron and free-electron laser facilities. Recently, the implementation of transverse gradient undulators has been proposed to enhance the performance of new generation light sources. In this paper it is demonstrated that Apple undulators do not only generate linear and elliptical polarized light but also variable transverse gradient under certain conditions. A general theoretical framework is introduced to evaluate the K-value and its transverse gradient for an Apple undulator, and formulas for all regular operational modes and different Apple types (including the most recent Delta type and Apple X) are calculated and critically discussed.

Effective aperture of X-ray compound refractive lenses


A new definition of the effective aperture of the X-ray compound refractive lens (CRL) is proposed. Both linear (one-dimensional) and circular (two-dimensional) CRLs are considered. It is shown that for a strongly absorbing CRL the real aperture does not influence the focusing properties and the effective aperture is determined by absorption. However, there are three ways to determine the effective aperture in terms of transparent CRLs. In the papers by Kohn [(2002). JETP Lett. 76, 600–603; (2003). J. Exp. Theor. Phys. 97, 204–215; (2009). J. Surface Investig. 3, 358–364; (2012). J. Synchrotron Rad. 19, 84–92; Kohn et al. (2003). Opt. Commun. 216, 247–260; (2003). J. Phys. IV Fr, 104, 217–220], the FWHM of the X-ray beam intensity just behind the CRL was used. In the papers by Lengeler et al. [(1999). J. Synchrotron Rad. 6, 1153–1167; (1998). J. Appl. Phys. 84, 5855–5861], the maximum intensity value at the focus was used. Numerically, these two definitions differ by 50%. The new definition is based on the integral intensity of the beam behind the CRL over the real aperture. The integral intensity is the most physical value and is independent of distance. The new definition gives a value that is greater than that of the Kohn definition by 6% and less than that of the Lengeler definition by 41%. A new approximation for the aperture function of a two-dimensional CRL is proposed which allows one to calculate the two-dimensional CRL through the one-dimensional CRL and to obtain an analytical solution for a complex system of many CRLs.

Long, elliptically bent, active X-ray mirrors with slope errors <200 nrad


Actively bent X-ray mirrors are important components of many synchrotron and X-ray free-electron laser beamlines. A high-quality optical surface and good bending performance are essential to ensure that the X-ray beam is accurately focused. Two elliptically bent X-ray mirror systems from FMB Oxford were characterized in the optical metrology laboratory at Diamond Light Source. A comparison of Diamond-NOM slope profilometry and finite-element analysis is presented to investigate how the 900 mm-long mirrors sag under gravity, and how this deformation can be adequately compensated using a single, spring-loaded compensator. It is shown that two independent mechanical actuators can accurately bend the trapezoidal substrates to a range of elliptical profiles. State-of-the-art residual slope errors of <200 nrad r.m.s. are achieved over the entire elliptical bending range. High levels of bending repeatability (ΔR/R = 0.085% and 0.156% r.m.s. for the two bending directions) and stability over 24 h (ΔR/R = 0.07% r.m.s.) provide reliable beamline performance.

Understanding the instrumental profile of synchrotron radiation X-ray powder diffraction beamlines


A Monte Carlo algorithm has been developed to calculate the instrumental profile function of a powder diffraction synchrotron beamline. Realistic models of all optical elements are implemented in a ray-tracing software. The proposed approach and the emerging paradigm have been investigated and verified for several existing X-ray powder diffraction beamlines. The results, which can be extended to further facilities, show a new and general way of assessing the contribution of instrumental broadening to synchrotron radiation data, based on ab initio simulations.

Non-contact luminescence lifetime cryothermometry for macromolecular crystallography


Temperature is a very important parameter when aiming to minimize radiation damage to biological samples during experiments that utilize intense ionizing radiation. A novel technique for remote, non-contact, in situ monitoring of the protein crystal temperature has been developed for the new I23 beamline at the Diamond Light Source, a facility dedicated to macromolecular crystallography (MX) with long-wavelength X-rays. The temperature is derived from the temperature-dependent decay time constant of luminescence from a minuscule scintillation sensor (<0.05 mm3) located in very close proximity to the sample under test. In this work the underlying principle of cryogenic luminescence lifetime thermometry is presented, the features of the detection method and the choice of temperature sensor are discussed, and it is demonstrated how the temperature monitoring system was integrated within the viewing system of the endstation used for the visualization of protein crystals. The thermometry system was characterized using a Bi4Ge3O12 crystal scintillator that exhibits good responsivity of the decay time constant as a function of temperature over a wide range (8–270 K). The scintillation sensor was calibrated and the uncertainty of the temperature measurements over the primary operation temperature range of the beamline (30–150 K) was assessed to be ±1.6 K. It has been shown that the temperature of the sample holder, measured using the luminescence sensor, agrees well with the expected value. The technique was applied to characterize the thermal performance of different sample mounts that have been used in MX experiments at the I23 beamline. The thickness of the mount is shown to have the greatest impact upon the temperature distribution across the sample mount. Altogether, these tests and findings demonstrate the usefulness of the thermometry system in highlighting the challenges that remain to be addressed for the in-vacuum MX experiment to become a reliable and indispensable tool for structural biology.

Complex solutions under shear and pressure: a rheometer setup for X-ray scattering experiments


A newly developed high-pressure rheometer for in situ X-ray scattering experiments is described. A commercial rheometer was modified in such a way that X-ray scattering experiments can be performed under different pressures and shear. First experiments were carried out on hyaluronan, a ubiquitous biopolymer that is important for different functions in the body such as articular joint lubrication. The data hint at a decreased electrostatic interaction at higher pressure, presumably due to the increase of the dielectric constant of water by 3% and the decrease of the free volume at 300 bar.

Caltrop particles synthesized by photochemical reaction induced by X-ray radiolysis


X-ray radiolysis of a Cu(CH3COO)2 solution was observed to produce caltrop-shaped particles of cupric oxide (CuO, Cu2O), which were characterized using high-resolution scanning electron microscopy and micro-Raman spectrometry. X-ray irradiation from a synchrotron source drove the room-temperature synthesis of submicrometer- and micrometer-scale cupric oxide caltrop particles from an aqueous Cu(CH3COO)2 solution spiked with ethanol. The size of the caltrop particles depended on the ratio of ethanol in the stock solution and the surface of the substrate. The results indicated that there were several synthetic routes to obtain caltrop particles, each associated with electron donation. The technique of X-ray irradiation enables the rapid synthesis of caltrop cupric oxide particles compared with conventional synthetic methods.

Advances in testing the effect of acceleration on time dilation using a synchrotron Mössbauer source


New results, additional techniques and know-how acquired, developed and employed in a recent HC-1898 experiment at the Nuclear Resonance Beamline ID18 of ESRF are presented, in the quest to explore the acceleration effect on time dilation. Using the specially modified Synchrotron Mössbauer Source and KB-optics together with a rotating single-line semicircular Mössbauer absorber on the rim of a specially designed rotating disk, the aim was to measure the relative spectral shift between the spectra of two states when the acceleration of the absorber is anti-parallel and parallel to the source. A control system was used for the first time and a method to quantify the effects of non-random vibrations on the spectral shift was developed. For several runs where the effect of these vibrations was negligible, a stable statistically significant non-zero relative shift was observed. This suggests the influence of acceleration on time.

Development of picosecond time-resolved X-ray absorption spectroscopy by high-repetition-rate laser pump/X-ray probe at Beijing Synchrotron Radiation Facility


A new setup and commissioning of transient X-ray absorption spectroscopy are described, based on the high-repetition-rate laser pump/X-ray probe method, at the 1W2B wiggler beamline at the Beijing Synchrotron Radiation Facility. A high-repetition-rate and high-power laser is incorporated into the setup with in-house-built avalanche photodiodes as detectors. A simple acquisition scheme was applied to obtain laser-on and laser-off signals simultaneously. The capability of picosecond transient X-ray absorption spectroscopy measurement was demonstrated for a photo-induced spin-crossover iron complex in 6 mM solution with 155 kHz repetition rate.

Time-resolved XAFS measurement using quick-scanning techniques at BSRF


A new quick-scanning X-ray absorption fine-structure (QXAFS) system has been established on beamline 1W1B at the Beijing Synchrotron Radiation Facility. As an independent device, the QXAFS system can be employed by other beamlines equipped with a double-crystal monochromator to carry out quick energy scans and data acquisition. Both continuous-scan and trapezoidal-scan modes are available in this system to satisfy the time scale from subsecond (in the X-ray absorption near-edge structure region) to 1 min. Here, the trapezoidal-scan method is presented as being complementary to the continuous-scan method, in order to maintain high energy resolution and good signal-to-noise ratio. The system is demonstrated to be very reliable and has been combined with in situ cells to carry out time-resolved XAFS studies.

Respiratory-gated KES imaging of a rat model of acute lung injury at the Canadian Light Source


In this study, contrast-enhanced X-ray tomographic imaging for monitoring and quantifying respiratory disease in preclinical rodent models is proposed. A K-edge imaging method has been developed at the Canadian Light Source to very accurately obtain measurements of the concentration of iodinated contrast agent in the pulmonary vasculature and inhaled xenon in the airspaces of rats. To compare the iodine and xenon concentration maps, a scout projection image was acquired to define the region of interest within the thorax for imaging and to ensure the same locations were imaged in each K-edge subtraction (KES) acquisition. A method for triggering image acquisition based on the real-time measurements of respiration was also developed to obtain images during end expiration when the lungs are stationary, in contrast to other previously published studies that alter the respiration to accommodate the image acquisition. In this study, images were obtained in mechanically ventilated animals using physiological parameters at the iodine K-edge in vivo and at the xenon K-edge post mortem (but still under mechanical ventilation). The imaging techniques were performed in healthy Brown Norway rats and in age-matched littermates that had an induced lung injury to demonstrate feasibility of the imaging procedures and the ability to correlate the lung injury and the quantitative measurements of contrast agent concentrations between the two KES images. The respiratory-gated KES imaging protocol can be easily adapted to image during any respiratory phase and is feasible for imaging disease models with compromised lung function.

Radiography registration for mosaic tomography


A hybrid method of stitching X-ray computed tomography (CT) datasets is proposed and the feasibility to apply the scheme in a synchrotron tomography beamline with micrometre resolution is shown. The proposed method enables the field of view of the system to be extended while spatial resolution and experimental setup remain unchanged. The approach relies on taking full tomographic datasets at different positions in a mosaic array and registering the frames using Fourier phase correlation and a residue-based correlation. To ensure correlation correctness, the limits for the shifts are determined from the experimental motor position readouts. The masked correlation image is then minimized to obtain the correct shift. The partial datasets are blended in the sinogram space to be compatible with common CT reconstructors. The feasibility to use the algorithm to blend the partial datasets in projection space is also shown, creating a new single dataset, and standard reconstruction algorithms are used to restore high-resolution slices even with a small number of projections.

Hard X-ray-induced damage on carbon–binder matrix for in situ synchrotron transmission X-ray microscopy tomography of Li-ion batteries


The electrode of Li-ion batteries is required to be chemically and mechanically stable in the electrolyte environment for in situ monitoring by transmission X-ray microscopy (TXM). Evidence has shown that continuous irradiation has an impact on the microstructure and the electrochemical performance of the electrode. To identify the root cause of the radiation damage, a wire-shaped electrode is soaked in an electrolyte in a quartz capillary and monitored using TXM under hard X-ray illumination. The results show that expansion of the carbon–binder matrix by the accumulated X-ray dose is the key factor of radiation damage. For in situ TXM tomography, intermittent X-ray exposure during image capturing can be used to avoid the morphology change caused by radiation damage on the carbon–binder matrix.

A high-pressure single-crystal-diffraction experimental system at 4W2 beamline of BSRF


Information on the structural evolution of materials under high pressure is of great importance for understanding the properties of materials exhibited under high pressure. High-pressure powder diffraction is widely used to investigate the structure evolution of materials at such pressure. Unfortunately, powder diffraction data are usually insufficient for retrieving the atomic structures, with high-pressure single-crystal diffraction being more desirable for such a purpose. Here, a high-pressure single-crystal diffraction experimental system developed recently at beamline 4W2 of Beijing Synchrotron Radiation Facility (BSRF) is reported. The design and operation of this system are described with emphasis on special measures taken to allow for the special circumstance of high-pressure single-crystal diffraction. As an illustration, a series of diffraction datasets were collected on a single crystal of LaB6 using this system under various pressures (from ambient pressure to 39.1 GPa). The quality of the datasets was found to be sufficient for structure solution and subsequent refinement.

SUT-NANOTEC-SLRI beamline for X-ray absorption spectroscopy


The SUT-NANOTEC-SLRI beamline was constructed in 2012 as the flagship of the SUT-NANOTEC-SLRI Joint Research Facility for Synchrotron Utilization, co-established by Suranaree University of Technology (SUT), National Nanotechnology Center (NANOTEC) and Synchrotron Light Research Institute (SLRI). It is an intermediate-energy X-ray absorption spectroscopy (XAS) beamline at SLRI. The beamline delivers an unfocused monochromatic X-ray beam of tunable photon energy (1.25–10 keV). The maximum normal incident beam size is 13 mm (width) × 1 mm (height) with a photon flux of 3 × 108 to 2 × 1010 photons s−1 (100 mA)−1 varying across photon energies. Details of the beamline and XAS instrumentation are described. To demonstrate the beamline performance, K-edge XANES spectra of MgO, Al2O3, S8, FeS, FeSO4, Cu, Cu2O and CuO, and EXAFS spectra of Cu and CuO are presented.

Finite-element modelling of multilayer X-ray optics


Multilayer optical elements for hard X-rays are an attractive alternative to crystals whenever high photon flux and moderate energy resolution are required. Prediction of the temperature, strain and stress distribution in the multilayer optics is essential in designing the cooling scheme and optimizing geometrical parameters for multilayer optics. The finite-element analysis (FEA) model of the multilayer optics is a well established tool for doing so. Multilayers used in X-ray optics typically consist of hundreds of periods of two types of materials. The thickness of one period is a few nanometers. Most multilayers are coated on silicon substrates of typical size 60 mm × 60 mm × 100–300 mm. The high aspect ratio between the size of the optics and the thickness of the multilayer (107) can lead to a huge number of elements for the finite-element model. For instance, meshing by the size of the layers will require more than 1016 elements, which is an impossible task for present-day computers. Conversely, meshing by the size of the substrate will produce a too high element shape ratio (element geometry width/height > 106), which causes low solution accuracy; and the number of elements is still very large (106). In this work, by use of ANSYS layer-functioned elements, a thermal-structural FEA model has been implemented for multilayer X-ray optics. The possible number of layers that can be computed by presently available computers is increased considerably.

Current events