Subscribe: Journal of Applied Crystallography
http://journals.iucr.org/j/rss10.xml
Preview: Journal of Applied Crystallography

Journal of Applied Crystallography



Journal of Applied Crystallography covers a wide range of crystallographic topics from the viewpoints of both techniques and theory. The journal presents articles on the application of crystallographic techniques and on the related apparatus and computer



Published: 2017-04-13

 



Threefold rotational symmetry in hexagonally shaped core–shell (In,Ga)As/GaAs nanowires revealed by coherent X-ray diffraction imaging

2017-04-13

Coherent X-ray diffraction imaging at symmetric hhh Bragg reflections was used to resolve the structure of GaAs/In0.15Ga0.85As/GaAs core–shell–shell nanowires grown on a silicon (111) substrate. Diffraction amplitudes in the vicinity of GaAs 111 and GaAs 333 reflections were used to reconstruct the lost phase information. It is demonstrated that the structure of the core–shell–shell nanowire can be identified by means of phase contrast. Interestingly, it is found that both scattered intensity in the (111) plane and the reconstructed scattering phase show an additional threefold symmetry superimposed with the shape function of the investigated hexagonal nanowires. In order to find the origin of this threefold symmetry, elasticity calculations were performed using the finite element method and subsequent kinematic diffraction simulations. These suggest that a non-hexagonal (In,Ga)As shell covering the hexagonal GaAs core might be responsible for the observation.



Incorporation of interfacial roughness into recursion matrix formalism of dynamical X-ray diffraction in multilayers and superlattices

2017-04-13

Diffraction in multilayers in the presence of interfacial roughness is studied theoretically, the roughness being considered as a transition layer. Exact (within the framework of the two-beam dynamical diffraction theory) differential equations for field amplitudes in a crystalline structure with varying properties along its surface normal are obtained. An iterative scheme for approximate solution of the equations is developed. The presented approach to interfacial roughness is incorporated into the recursion matrix formalism in a way that obviates possible numerical problems. Fitting of the experimental rocking curve is performed in order to test the possibility of reconstructing the roughness value from a diffraction scan. The developed algorithm works substantially faster than the traditional approach to dealing with a transition layer (dividing it into a finite number of thin lamellae). Calculations by the proposed approach are only two to three times longer than calculations for corresponding structures with ideally sharp interfaces.



Modelling and validation of particle size distributions of supported nanoparticles using the pair distribution function technique

2017-04-13

The particle size of supported catalysts is a key characteristic for determining structure–property relationships. It is a challenge to obtain this information accurately and in situ using crystallographic methods owing to the small size of such particles (<5 nm) and the fact that they are supported. In this work, the pair distribution function (PDF) technique was used to obtain the particle size distribution of supported Pt catalysts as they grow under typical synthesis conditions. The PDF of Pt nanoparticles grown on zeolite X was isolated and refined using two models: a monodisperse spherical model (single particle size) and a lognormal size distribution. The results were compared and validated using scanning transmission electron microscopy (STEM) results. Both models describe the same trends in average particle size with temperature, but the results of the number-weighted lognormal size distributions can also accurately describe the mean size and the width of the size distributions obtained from STEM. Since the PDF yields crystallite sizes, these results suggest that the grown Pt nanoparticles are monocrystalline. This work shows that refinement of the PDF of small supported monocrystalline nanoparticles can yield accurate mean particle sizes and distributions.



Simultaneous determination of high-temperature crystal structure and texture of synthetic porous cordierite

2017-04-13

The evolution of the crystal structure and crystallographic texture of porous synthetic cordierite was studied by in situ high-temperature neutron diffraction up to 1373 K, providing the first in situ high-temperature texture measurement of this technologically important material. It was observed that the crystal texture slightly weakens with increasing temperature, concurrently with subtle changes in the crystal structure. These changes are in agreement with previous work, leading the authors to the conclusion that high-temperature neutron diffraction allows reliable crystallographic characterization of materials with moderate texture. It was also observed that structural changes occur at about the glass transition temperature of the cordierite glass (between 973 and 1073 K). Crystal structure refinements were conducted with and without quantitative texture analysis being part of the Rietveld refinement, and a critical comparison of the results is presented, contributing to the sparse body of literature on combined texture and crystal structure refinements.



SLADS: a parallel code for direct simulations of scattering of large anisotropic dense nanoparticle systems

2017-04-13

SLADS (http://www.pims.ac.cn/Resources.html), a parallel code for direct simulations of X-ray scattering of large anisotropic dense nanoparticle systems of arbitrary species and atomic configurations, is presented. Particles can be of arbitrary shapes and dispersities, and interactions between particles are considered. Parallelization is achieved in real space for the sake of memory limitation. The system sizes attempted are up to one billion atoms, and particle concentrations in dense systems up to 0.36. Anisotropy is explored in terms of superlattices. One- and two-dimensional small-angle scattering or diffraction patterns are obtained. SLADS is validated self-consistently or against cases with analytical solutions.