Subscribe: Acta Crystallographica Section F
http://journals.iucr.org/f/rss10.xml
Added By: Feedage Forager Feedage Grade B rated
Language: English
Tags:
binding  crystal structure  crystal  dsbd  phorpp  protein  resolution  structural  structure  structures   å resolution   å 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: Acta Crystallographica Section F

Acta Crystallographica Section F



Acta Crystallographica Section F: Structural Biology Communications is a rapid all-electronic journal, which provides a home for short communications on the crystallization and structure of biological macromolecules. Structures determined through structur



Published: 2017-12-22

 



The novel thermostable cellulose-degrading enzyme DtCel5H from Dictyoglomus thermophilum: crystallization and X-ray crystallographic analysis

2018-01-01

Cellulose-based products constitute the great majority of municipal waste, and applications of cellulases in the conversion of waste biomass to biofuels will be a key technology in future biorefineries. Currently, multi-enzymatic pre-treatment of biomass is a crucial step in making carbohydrates more accessible for subsequent fermentation. Using bioinformatics analysis, endo-β-(1,4)-glucanase from Dictyoglomus thermophilum (DtCel5H) was identified as a new member of glycosyl hydrolase family 5. The gene encoding DtCel5H was cloned and the recombinant protein was overexpressed for crystallization and biophysical studies. Here, it is shown that this enzyme is active on cellulose substrates and is highly thermostable. Crystals suitable for crystallographic investigations were also obtained in different crystallization conditions. In particular, ordered crystals of DtCel5H were obtained using either ammonium sulfate or polyethylene glycol (PEG) as a precipitant agent. The crystals obtained in the presence of ammonium sulfate belonged to space group P32, with unit-cell parameters a = 73.1, b = 73.1, 73.1, c = 127.8 Å, and diffracted to 1.5 Å resolution, whereas the second crystal form belonged to the orthorhombic space group P212121, with unit-cell parameters a = 49.3, b = 67.9, c = 103.7 Å, and diffracted to 1.6 Å resolution. The crystal structure was solved in both space groups using molecular-replacement methods. Structure–activity and structure–stability studies of DtCel5H will provide insights for the design of high-performance enzymes.



Crystal structure of cytoplasmic acetoacetyl-CoA thiolase from Saccharomyces cerevisiae

2018-01-01

Thiolases are vital enzymes which participate in both degradative and biosynthetic pathways. Biosynthetic thiolases catalyze carbon–carbon bond formation by a Claisen condensation reaction. The cytoplasmic acetoacetyl-CoA thiolase from Saccharomyces cerevisiae, ERG10, catalyses carbon–carbon bond formation in the mevalonate pathway. The structure of a S. cerevisiae biosynthetic thiolase has not previously been reported. Here, crystal structures of apo ERG10 and its Cys91Ala variant were solved at resolutions of 2.2 and 1.95 Å, respectively. The structure determined shows that ERG10 shares the characteristic thiolase superfamily fold, with a similar active-site architecture to those of type II thiolases and a similar binding pocket, apart from Ala159 at the entrance to the pantetheine-binding cavity, which appears to be a determinant of the poor binding ability of the substrate. Moreover, comparative binding-pocket analysis of molecule B in the asymmetric unit of the apo structure with that of the CoA-bound complex of human mitochondrial acetoacetyl-CoA thiolase indicates the canonical binding mode of CoA. Furthermore, the steric hindrance revealed in a structural comparison of molecule A with the CoA-bound form raise the possibility of conformational changes that are associated with substrate binding.



Structure of aspartate β-semialdehyde dehydrogenase from Francisella tularensis

2018-01-01

Aspartate β-semialdehyde dehydrogenase (ASADH) is an enzyme involved in the diaminopimelate pathway of lysine biosynthesis. It is essential for the viability of many pathogenic bacteria and therefore has been the subject of considerable research for the generation of novel antibiotic compounds. This manuscript describes the first structure of ASADH from Francisella tularensis, the causative agent of tularemia and a potential bioterrorism agent. The structure was determined at 2.45 Å resolution and has a similar biological assembly to other bacterial homologs. ASADH is known to be dimeric in bacteria and have extensive interchain contacts, which are thought to create a half-sites reactivity enzyme. ASADH from higher organisms shows a tetrameric oligomerization, which also has implications for both reactivity and regulation. This work analyzes the apo form of F. tularensis ASADH, as well as the binding of the enzyme to its cofactor NADP+.



Structure and stability of the Human respiratory syncytial virus M2–1 RNA-binding core domain reveals a compact and cooperative folding unit

2017-12-15

Human syncytial respiratory virus is a nonsegmented negative-strand RNA virus with serious implications for respiratory disease in infants, and has recently been reclassified into a new family, Pneumoviridae. One of the main reasons for this classification is the unique presence of a transcriptional antiterminator, called M2–1. The puzzling mechanism of action of M2–1, which is a rarity among antiterminators in viruses and is part of the RNA polymerase complex, relies on dissecting the structure and function of this multidomain tetramer. The RNA-binding activity is located in a monomeric globular `core' domain, a high-resolution crystal structure of which is now presented. The structure reveals a compact domain which is superimposable on the full-length M2–1 tetramer, with additional electron density for the C-terminal tail that was not observed in the previous models. Moreover, its folding stability was determined through chemical denaturation, which shows that the secondary and tertiary structure unfold concomitantly, which is indicative of a two-state equilibrium. These results constitute a further step in the understanding of this unique RNA-binding domain, for which there is no sequence or structural counterpart outside this virus family, in addition to its implications in transcription regulation and its likeliness as an antiviral target.



Production, biophysical characterization and initial crystallization studies of the N- and C-terminal domains of DsbD, an essential enzyme in Neisseria meningitidis

2018-01-01

The membrane protein DsbD is a reductase that acts as an electron hub, translocating reducing equivalents from cytoplasmic thioredoxin to a number of periplasmic substrates involved in oxidative protein folding, cytochrome c maturation and oxidative stress defence. DsbD is a multi-domain protein consisting of a transmembrane domain (t-DsbD) flanked by two periplasmic domains (n-DsbD and c-DsbD). Previous studies have shown that DsbD is required for the survival of the obligate human pathogen Neisseria meningitidis. To help understand the structural and functional aspects of N. meningitidis DsbD, the two periplasmic domains which are required for electron transfer are being studied. Here, the expression, purification and biophysical properties of n-NmDsbD and c-NmDsbD are described. The crystallization and crystallographic analysis of n-NmDsbD and c-NmDsbD are also described in both redox states, which differ only in the presence or absence of a disulfide bond but which crystallized in completely different conditions. Crystals of n-NmDsbDOx, n-NmDsbDRed, c-NmDsbDOx and c-NmDsbDRed diffracted to 2.3, 1.6, 2.3 and 1.7 Å resolution and belonged to space groups P213, P321, P41 and P1211, respectively.



Structural characterization of a novel monotreme-specific protein with antimicrobial activity from the milk of the platypus

2018-01-01

Monotreme lactation protein (MLP) is a recently identified protein with antimicrobial activity. It is present in the milk of monotremes and is unique to this lineage. To characterize MLP and to gain insight into the potential role of this protein in the evolution of lactation, the crystal structure of duck-billed platypus (Ornithorhynchus anatinus) MLP was determined at 1.82 Å resolution. This is the first structure to be reported for this novel, mammalian antibacterial protein. MLP was expressed as a FLAG epitope-tagged protein in mammalian cells and crystallized readily, with at least three space groups being observed (P1, C2 and P21). A 1.82 Å resolution native data set was collected from a crystal in space group P1, with unit-cell parameters a = 51.2, b = 59.7, c = 63.1 Å, α = 80.15, β = 82.98, γ = 89.27°. The structure was solved by SAD phasing using a protein crystal derivatized with mercury in space group C2, with unit-cell parameters a = 92.7, b = 73.2, c = 56.5 Å, β = 90.28°. MLP comprises a monomer of 12 helices and two short β-strands, with much of the N-terminus composed of loop regions. The crystal structure of MLP reveals no three-dimensional similarity to any known structures and reveals a heretofore unseen fold, supporting the idea that monotremes may be a rich source for the identification of novel proteins. It is hypothesized that MLP in monotreme milk has evolved to specifically support the unusual lactation strategy of this lineage and may have played a central role in the evolution of these mammals.



Solution NMR structures of oxidized and reduced Ehrlichia chaffeensis thioredoxin: NMR-invisible structure owing to backbone dynamics

2018-01-01

Thioredoxins are small ubiquitous proteins that participate in a diverse variety of redox reactions via the reversible oxidation of two cysteine thiol groups in a structurally conserved active site. Here, the NMR solution structures of a reduced and oxidized thioredoxin from Ehrlichia chaffeensis (Ec-Trx, ECH_0218), the etiological agent responsible for human monocytic ehrlichiosis, are described. The overall topology of the calculated structures is similar in both redox states and is similar to those of other thioredoxins: a five-stranded, mixed β-sheet (β1–β3–β2–β4–β5) surrounded by four α-helices. Unlike other thioredoxins studied by NMR in both redox states, the 1H–15N HSQC spectrum of reduced Ec-Trx was missing eight additional amide cross peaks relative to the spectrum of oxidized Ec-Trx. These missing amides correspond to residues Cys35–Glu39 in the active-site-containing helix (α2) and Ser72–Ile75 in a loop near the active site, and suggest a change in backbone dynamics on the millisecond-to-microsecond timescale associated with the breakage of an intramolecular Cys32–Cys35 disulfide bond in a thioredoxin. A consequence of the missing amide resonances is the absence of observable or unambiguous NOEs to provide the distance restraints necessary to define the N-terminal end of the α-helix containing the CPGC active site in the reduced state. This region adopts a well defined α-helical structure in other reported reduced thioredoxin structures, is mostly helical in oxidized Ec-Trx and CD studies of Ec-Trx in both redox states suggests there is no significant difference in the secondary structure of the protein. The NMR solution structure of reduced Ec-Trx illustrates that the absence of canonical structure in a region of a protein may be owing to unfavorable dynamics prohibiting NOE observations or unambiguous NOE assignments.



Crystal structures of the archaeal RNase P protein Rpp38 in complex with RNA fragments containing a K-turn motif

2018-01-01

A characteristic feature of archaeal ribonuclease P (RNase P) RNAs is that they have extended helices P12.1 and P12.2 containing kink-turn (K-turn) motifs to which the archaeal RNase P protein Rpp38, a homologue of the human RNase P protein Rpp38, specifically binds. PhoRpp38 from the hyperthermophilic archaeon Pyrococcus horikoshii is involved in the elevation of the optimum temperature of the reconstituted RNase P by binding the K-turns in P12.1 and P12.2. Previously, the crystal structure of PhoRpp38 in complex with the K-turn in P12.2 was determined at 3.4 Å resolution. In this study, the crystal structure of PhoRpp38 in complex with the K-turn in P12.2 was improved to 2.1 Å resolution and the structure of PhoRpp38 in complex with the K-turn in P12.1 was also determined at a resolution of 3.1 Å. Both structures revealed that Lys35, Asn38 and Glu39 in PhoRpp38 interact with characteristic G·A and A·G pairs in the K-turn, while Thr37, Asp59, Lys84, Glu94, Ala96 and Ala98 in PhoRpp38 interact with the three-nucleotide bulge in the K-turn. Moreover, an extended stem-loop containing P10–P12.2 in complex with PhoRpp38, as well as PhoRpp21 and PhoRpp29, which are the archaeal homologues of the human proteins Rpp21 and Rpp29, respectively, was affinity-purified and crystallized. The crystals thus grown diffracted to a resolution of 6.35 Å. Structure determination of the crystals will demonstrate the previously proposed secondary structure of stem-loops including helices P12.1 and P12.2 and will also provide insight into the structural organization of the specificity domain in P. horikoshii RNase P RNA.



Structure of the mouse acidic amino acid decarboxylase GADL1

2018-01-01

Pyridoxal 5′-phosphate (PLP) is a ubiquitous cofactor in various enzyme classes, including PLP-dependent decarboxylases. A recently discovered member of this class is glutamic acid decarboxylase-like protein 1 (GADL1), which lacks the activity to decarboxylate glutamate to γ-aminobutyrate, despite its homology to glutamic acid decarboxylase. Among the acidic amino acid decarboxylases, GADL1 is most similar to cysteine sulfinic acid decarboxylase (CSAD), but the physiological function of GADL1 is unclear, although its expression pattern and activity suggest a role in neurotransmitter and neuroprotectant metabolism. The crystal structure of mouse GADL1 is described, together with a solution model based on small-angle X-ray scattering data. While the overall fold and the conformation of the bound PLP are similar to those in other PLP-dependent decarboxylases, GADL1 adopts a more loose conformation in solution, which might have functional relevance in ligand binding and catalysis. The structural data raise new questions about the compactness, flexibility and conformational dynamics of PLP-dependent decarboxylases, including GADL1.