Subscribe: Acta Crystallographica Section D
Added By: Feedage Forager Feedage Grade B rated
Language: English
active site  active  binding  bound  crystal structure  crystal  enzyme  new  protein  reported  site  structure  structures  zinc 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: Acta Crystallographica Section D

Acta Crystallographica Section D

Acta Crystallographica Section D: Biological Crystallography welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules and the methods used to determine them. R

Published: 2017-01-01


Structure and conformational plasticity of the U6 small nuclear ribonucleoprotein core


U6 small nuclear RNA (snRNA) is a key component of the active site of the spliceosome, a large ribonucleoprotein complex that catalyzes the splicing of precursor messenger RNA. Prior to its incorporation into the spliceosome, U6 is bound by the protein Prp24, which facilitates unwinding of the U6 internal stem-loop (ISL) so that it can pair with U4 snRNA. A previously reported crystal structure of the `core' of the U6 small nuclear ribonucleoprotein (snRNP) contained an ISL-stabilized A62G mutant of U6 bound to all four RNA-recognition motif (RRM) domains of Prp24 [Montemayor et al. (2014), Nature Struct. Mol. Biol. 21, 544–551]. The structure revealed a novel topology containing interlocked rings of protein and RNA that was not predicted by prior biochemical and genetic data. Here, the crystal structure of the U6 snRNP core with a wild-type ISL is reported. This complex crystallized in a new space group, apparently owing in part to the presence of an intramolecular cross-link in RRM1 that was not observed in the previously reported U6-A62G structure. The structure exhibits the same protein–RNA interface and maintains the unique interlocked topology. However, the orientation of the wild-type ISL is altered relative to the A62G mutant structure, suggesting inherent structural dynamics that may facilitate its pairing with U4. Consistent with their similar architectures in the crystalline state, the wild-type and A62G variants of U6 exhibit similar Prp24-binding affinities and electrophoretic mobilities when analyzed by gel-shift assay.

Structural studies of substrate and product complexes of 5-aminolaevulinic acid dehydratase from humans, Escherichia coli and the hyperthermophile Pyrobaculum calidifontis


A number of X-ray analyses of an enzyme involved in a key early stage of tetrapyrrole biosynthesis are reported. Two structures of human 5-aminolaevulinate dehydratase (ALAD), native and recombinant, have been determined at 2.8 Å resolution, showing that the enzyme adopts an octameric quaternary structure in accord with previously published analyses of the enzyme from a range of other species. However, this is in contrast to the finding that a disease-related F12L mutant of the human enzyme uniquely forms hexamers [Breinig et al. (2003), Nature Struct. Biol. 10, 757–763]. Monomers of all ALADs adopt the TIM-barrel fold; the subunit conformation that assembles into the octamer includes the N-terminal tail of one monomer curled around the (α/β)8 barrel of a neighbouring monomer. Both crystal forms of the human enzyme possess two monomers per asymmetric unit, termed A and B. In the native enzyme there are a number of distinct structural differences between the A and B monomers, with the latter exhibiting greater disorder in a number of loop regions and in the active site. In contrast, the second monomer of the recombinant enzyme appears to be better defined and the active site of both monomers clearly possesses a zinc ion which is bound by three conserved cysteine residues. In native human ALAD, the A monomer also has a ligand resembling the substrate ALA which is covalently bound by a Schiff base to one of the active-site lysines (Lys252) and is held in place by an ordered active-site loop. In contrast, these features of the active-site structure are disordered or absent in the B subunit of the native human enzyme. The octameric structure of the zinc-dependent ALAD from the hyperthermophile Pyrobaculum calidifontis is also reported at a somewhat lower resolution of 3.5 Å. Finally, the details are presented of a high-resolution structure of the Escherichia coli ALAD enzyme co-crystallized with a noncovalently bound moiety of the product, porphobilinogen (PBG). This structure reveals that the pyrrole side-chain amino group is datively bound to the active-site zinc ion and that the PBG carboxylates interact with the enzyme via hydrogen bonds and salt bridges with invariant residues. A number of hydrogen-bond interactions that were previously observed in the structure of yeast ALAD with a cyclic intermediate resembling the product PBG appear to be weaker in the new structure, suggesting that these interactions are only optimal in the transition state.

Solution of the structure of a calmodulin–peptide complex in a novel configuration from a variably twinned data set


Structure determination of conformationally variable proteins can prove challenging even when many possible molecular-replacement (MR) search models of high sequence similarity are available. Calmodulin (CaM) is perhaps the best-studied archetype of these flexible proteins: while there are currently ∼450 structures of significant sequence similarity available in the Protein Data Bank (PDB), novel conformations of CaM and complexes thereof continue to be reported. Here, the details of the solution of a novel peptide–CaM complex structure by MR are presented, in which only one MR solution of marginal quality was found despite the use of 120 different search models, an exclusivity enhanced by the presence of a high degree of hemihedral twinning (overall refined twin fraction = 0.43). Ambiguities in the initial MR electron-density maps were overcome by using MR-SAD: phases from the MR partial model were used to identify weak anomalous scatterers (calcium, sulfur and chloride), which were in turn used to improve the phases, automatically rebuild the structure and resolve sequence ambiguities. Retrospective analysis of consecutive wedges of the original data sets showed twin fractions ranging from 0.32 to 0.55, suggesting that the data sets were variably twinned. Despite these idiosyncrasies and obstacles, the data themselves and the final model were of high quality and indeed showed a novel, nearly right-angled conformation of the bound peptide.

The structure of a calcium-dependent phosphoinositide-specific phospholipase C from Pseudomonas sp. 62186, the first from a Gram-negative bacterium


Bacterial phosphoinositide-specific phospholipases C (PI-PLCs) are the smallest members of the PI-PLC family, which includes much larger mammalian enzymes responsible for signal transduction as well as enzymes from protozoan parasites, yeast and plants. Eukaryotic PI-PLCs have calcium in the active site, but this is absent in the known structures of Gram-positive bacteria, where its role is instead played by arginine. In addition to their use in a number of industrial applications, the bacterial enzymes attract special interest because they can serve as convenient models of the catalytic domains of eukaryotic enzymes for in vitro activity studies. Here, the structure of a PI-PLC from Pseudomonas sp. 62186 is reported, the first from a Gram-negative bacterium and the first of a native bacterial PI-PLC with calcium present in the active site. Solution of the structure posed particular problems owing to the low sequence identity of available homologous structures. Its dependence on calcium for catalysis makes this enzyme a better model for studies of the mammalian PI-PLCs than the previously used calcium-independent bacterial PI-PLCs.

Q|R: quantum-based refinement


Quantum-based refinement utilizes chemical restraints derived from quantum-chemical methods instead of the standard parameterized library-based restraints used in refinement packages. The motivation is twofold: firstly, the restraints have the potential to be more accurate, and secondly, the restraints can be more easily applied to new molecules such as drugs or novel cofactors. Here, a new project called Q|R aimed at developing quantum-based refinement of biomacromolecules is under active development by researchers at Shanghai University together with PHENIX developers. The central focus of this long-term project is to develop software that is built on top of open-source components. A development version of Q|R was used to compare quantum-based refinements with standard refinement using a small model system.

Crystal structure of human chondroadherin: solving a difficult molecular-replacement problem using de novo models


Chondroadherin (CHAD) is a cartilage matrix protein that mediates the adhesion of isolated chondrocytes. Its protein core is composed of 11 leucine-rich repeats (LRR) flanked by cysteine-rich domains. CHAD makes important interactions with collagen as well as with cell-surface heparin sulfate proteoglycans and α2β1 integrins. The integrin-binding site is located in a region of hitherto unknown structure at the C-terminal end of CHAD. Peptides based on the C-terminal human CHAD (hCHAD) sequence have shown therapeutic potential for treating osteoporosis. This article describes a still-unconventional structure solution by phasing with de novo models, the first of a β-rich protein. Structure determination of hCHAD using traditional, though nonsystematic, molecular replacement was unsuccessful in the hands of the authors, possibly owing to a combination of low sequence identity to other LRR proteins, four copies in the asymmetric unit and weak translational pseudosymmetry. However, it was possible to solve the structure by generating a large number of de novo models for the central LRR domain using Rosetta and multiple parallel molecular-replacement attempts using AMPLE. The hCHAD structure reveals an ordered C-terminal domain belonging to the LRRCT fold, with the integrin-binding motif (WLEAK) being part of a regular α-helix, and suggests ways in which experimental therapeutic peptides can be improved. The crystal structure itself and docking simulations further support that hCHAD dimers form in a similar manner to other matrix LRR proteins.

Learning from oligosaccharide soaks of crystals of an AA13 lytic polysaccharide monooxygenase: crystal packing, ligand binding and active-site disorder


Lytic polysaccharide monooxygenases (LPMOs) are a class of copper-dependent enzymes discovered within the last ten years. They oxidatively cleave polysaccharides (chitin, lignocellulose, hemicellulose and starch-derived), presumably making recalcitrant substrates accessible to glycoside hydrolases. Recently, the first crystal structure of an LPMO–substrate complex was reported, giving insights into the interaction of LPMOs with β-linked substrates (Frandsen et al., 2016). The LPMOs acting on α-linked glycosidic bonds (family AA13) display binding surfaces that are quite different from those of LPMOs that act on β-linked glycosidic bonds (families AA9–AA11), as revealed from the first determined structure (Lo Leggio et al., 2015), and thus presumably the AA13s interact with their substrate in a distinct fashion. Here, several new structures of the same AA13 enzyme, Aspergillus oryzae AA13, are presented. Crystals obtained in the presence of high zinc-ion concentrations were used, as they can be obtained more reproducibly than those used to refine the deposited copper-containing structure. One structure with an ordered zinc-bound active site was solved at 1.65 Å resolution, and three structures from crystals soaked with maltooligosaccharides in solutions devoid of zinc ions were solved at resolutions of up to 1.10 Å. Despite similar unit-cell parameters, small rearrangements in the crystal packing occur when the crystals are depleted of zinc ions, resulting in a more occluded substrate-binding surface. In two of the three structures maltooligosaccharide ligands are bound, but not at the active site. Two of the structures presented show a His-ligand conformation that is incompatible with metal-ion binding. In one of these structures this conformation is the principal one (80% occupancy), giving a rare atomic resolution view of a substantially misfolded enzyme that is presumably rendered inactive.