Subscribe: Acta Crystallographica Section D
http://journals.iucr.org/d/rss10.xml
Added By: Feedage Forager Feedage Grade B rated
Language: English
Tags:
binding  crystal structure  crystal  data sets  data  indexing ambiguity  maba  new  protein  sets  structural  structure  substrate 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: Acta Crystallographica Section D

Acta Crystallographica Section D



Acta Crystallographica Section D: Biological Crystallography welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules and the methods used to determine them. R



Published: 2018-04-24

 



Structural rearrangements occurring upon cofactor binding in the Mycobacterium smegmatis β-ketoacyl-acyl carrier protein reductase MabA

2018-04-24

In mycobacteria, the ketoacyl-acyl carrier protein (ACP) reductase MabA (designated FabG in other bacteria) catalyzes the NADPH-dependent reduction of β-ketoacyl-ACP substrates to β-hydroxyacyl-ACP products. This first reductive step in the fatty-acid biosynthesis elongation cycle is essential for bacteria, which makes MabA/FabG an interesting drug target. To date, however, very few molecules targeting FabG have been discovered and MabA remains the only enzyme of the mycobacterial type II fatty-acid synthase that lacks specific inhibitors. Despite the existence of several MabA/FabG crystal structures, the structural rearrangement that occurs upon cofactor binding is still not fully understood. Therefore, unlocking this knowledge gap could help in the design of new inhibitors. Here, high-resolution crystal structures of MabA from Mycobacterium smegmatis in its apo, NADP+-bound and NADPH-bound forms are reported. Comparison of these crystal structures reveals the structural reorganization of the lid region covering the active site of the enzyme. The crystal structure of the apo form revealed numerous residues that trigger steric hindrance to the binding of NADPH and substrate. Upon NADPH binding, these residues are pushed away from the active site, allowing the enzyme to adopt an open conformation. The transition from an NADPH-bound to an NADP+-bound form is likely to facilitate release of the product. These results may be useful for subsequent rational drug design and/or for in silico drug-screening approaches targeting MabA/FabG.



Bacteroides thetaiotaomicron generates diverse α-mannosidase activities through subtle evolution of a distal substrate-binding motif

2018-04-24

A dominant human gut microbe, the well studied symbiont Bacteroides thetaiotaomicron (Bt), is a glyco-specialist that harbors a large repertoire of genes devoted to carbohydrate processing. Despite strong similarities among them, many of the encoded enzymes have evolved distinct substrate specificities, and through the clustering of cognate genes within operons termed polysaccharide-utilization loci (PULs) enable the fulfilment of complex biological roles. Structural analyses of two glycoside hydrolase family 92 α-mannosidases, BT3130 and BT3965, together with mechanistically relevant complexes at 1.8–2.5 Å resolution reveal conservation of the global enzyme fold and core catalytic apparatus despite different linkage specificities. Structure comparison shows that Bt differentiates the activity of these enzymes through evolution of a highly variable substrate-binding region immediately adjacent to the active site. These observations unveil a genetic/biochemical mechanism through which polysaccharide-processing bacteria can evolve new and specific biochemical activities from otherwise highly similar gene products.



Determination of Patterson group symmetry from sparse multi-crystal data sets in the presence of an indexing ambiguity

2018-04-24

Combining X-ray diffraction data from multiple samples requires determination of the symmetry and resolution of any indexing ambiguity. For the partial data sets typical of in situ room-temperature experiments, determination of the correct symmetry is often not straightforward. The potential for indexing ambiguity in polar space groups is also an issue, although methods to resolve this are available if the true symmetry is known. Here, a method is presented to simultaneously resolve the determination of the Patterson symmetry and the indexing ambiguity for partial data sets.



Microfocus diffraction from different regions of a protein crystal: structural variations and unit-cell polymorphism

2018-04-24

Real macromolecular crystals can be non-ideal in myriad ways. This often creates challenges for structure determination, while also offering opportunities for greater insight into the crystalline state and the dynamic behavior of macromolecules. To evaluate whether different parts of a single crystal of a dynamic protein, EutL, might be informative about crystal and protein polymorphism, a microfocus X-ray synchrotron beam was used to collect a series of 18 separate data sets from non-overlapping regions of the same crystal specimen. A principal component analysis (PCA) approach was employed to compare the structure factors and unit cells across the data sets, and it was found that the 18 data sets separated into two distinct groups, with large R values (in the 40% range) and significant unit-cell variations between the members of the two groups. This categorization mapped the different data-set types to distinct regions of the crystal specimen. Atomic models of EutL were then refined against two different data sets obtained by separately merging data from the two distinct groups. A comparison of the two resulting models revealed minor but discernable differences in certain segments of the protein structure, and regions of higher deviation were found to correlate with regions where larger dynamic motions were predicted to occur by normal-mode molecular-dynamics simulations. The findings emphasize that large spatially dependent variations may be present across individual macromolecular crystals. This information can be uncovered by simultaneous analysis of multiple partial data sets and can be exploited to reveal new insights about protein dynamics, while also improving the accuracy of the structure-factor data ultimately obtained in X-ray diffraction experiments.



Crystal structure of pyrrolizidine alkaloid N-oxygenase from the grasshopper Zonocerus variegatus

2018-04-24

The high-resolution crystal structure of the flavin-dependent monooxygenase (FMO) from the African locust Zonocerus variegatus is presented and the kinetics of structure-based protein variants are discussed. Z. variegatus expresses three flavin-dependent monooxygenase (ZvFMO) isoforms which contribute to a counterstrategy against pyrrolizidine alkaloids (PAs). PAs are protoxic compounds produced by some angiosperm lineages as a chemical defence against herbivores. N-Oxygenation of PAs and the accumulation of PA N-oxides within their haemolymph result in two evolutionary advantages for these insects: (i) they circumvent the defence mechanism of their food plants and (ii) they can use PA N-oxides to protect themselves against predators, which cannot cope with the toxic PAs. Despite a high degree of sequence identity and a similar substrate spectrum, the three ZvFMO isoforms differ greatly in enzyme activity. Here, the crystal structure of the Z. variegatus PA N-oxygenase (ZvPNO), the most active ZvFMO isoform, is reported at 1.6 Å resolution together with kinetic studies of a second isoform, ZvFMOa. This is the first available crystal structure of an FMO from class B (of six different FMO subclasses, A–F) within the family of flavin-dependent monooxygenases that originates from a more highly developed organism than yeast. Despite the differences in sequence between family members, their overall structure is very similar. This indicates the need for high conservation of the three-dimensional structure for this type of reaction throughout all kingdoms of life. Nevertheless, this structure provides the closest relative to the human enzyme that is currently available for modelling studies. Of note, the crystal structure of ZvPNO reveals a unique dimeric arrangement as well as small conformational changes within the active site that have not been observed before. A newly observed kink within helix α8 close to the substrate-binding path might indicate a potential mechanism for product release. The data show that even single amino-acid exchanges in the substrate-entry path, rather than the binding site, have a significant impact on the specific enzyme activity of the isoforms.



Multi-position data collection and dynamic beam sizing: recent improvements to the automatic data-collection algorithms on MASSIF-1

2018-04-24

Macromolecular crystallography is now a mature and widely used technique that is essential in the understanding of biology and medicine. Increases in computing power combined with robotics have not only enabled large numbers of samples to be screened and characterized but have also enabled better decisions to be taken on data collection itself. This led to the development of MASSIF-1 at the ESRF, the first beamline in the world to run fully automatically while making intelligent decisions taking user requirements into account. Since opening in late 2014, the beamline has processed over 42 000 samples. Improvements have been made to the speed of the sample-handling robotics and error management within the software routines. The workflows initially put into place, while highly innovative at the time, have been expanded to include increased complexity and additional intelligence using the information gathered during characterization; this includes adapting the beam diameter dynamically to match the diffraction volume within the crystal. Complex multi-position and multi-crystal data collections have now also been integrated into the selection of experiments available. This has led to increased data quality and throughput, allowing even the most challenging samples to be treated automatically.



KAMO: towards automated data processing for microcrystals

2018-04-24

In protein microcrystallography, radiation damage often hampers complete and high-resolution data collection from a single crystal, even under cryogenic conditions. One promising solution is to collect small wedges of data (5–10°) separately from multiple crystals. The data from these crystals can then be merged into a complete reflection-intensity set. However, data processing of multiple small-wedge data sets is challenging. Here, a new open-source data-processing pipeline, KAMO, which utilizes existing programs, including the XDS and CCP4 packages, has been developed to automate whole data-processing tasks in the case of multiple small-wedge data sets. Firstly, KAMO processes individual data sets and collates those indexed with equivalent unit-cell parameters. The space group is then chosen and any indexing ambiguity is resolved. Finally, clustering is performed, followed by merging with outlier rejections, and a report is subsequently created. Using synthetic and several real-world data sets collected from hundreds of crystals, it was demonstrated that merged structure-factor amplitudes can be obtained in a largely automated manner using KAMO, which greatly facilitated the structure analyses of challenging targets that only produced microcrystals.