Subscribe: Acta Crystallographica Section D
http://journals.iucr.org/d/rss10.xml
Added By: Feedage Forager Feedage Grade B rated
Language: English
Tags:
binding  crystal structure  crystal structures  crystal  methods  ngr  resolution  structure  structures   å resolution   å 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: Acta Crystallographica Section D

Acta Crystallographica Section D



Acta Crystallographica Section D: Biological Crystallography welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules and the methods used to determine them. R



Published: 2017-11-01

 



Nogo Receptor crystal structures with a native disulfide pattern suggest a novel mode of self-interaction

2017-10-19

The Nogo Receptor (NgR) is a glycophosphatidylinositol-anchored cell-surface protein and is a receptor for three myelin-associated inhibitors of regeneration: myelin-associated glycoprotein, Nogo66 and oligodendrocyte myelin glycoprotein. In combination with different co-receptors, NgR mediates signalling that reduces neuronal plasticity. The available structures of the NgR ligand-binding leucine-rich repeat (LRR) domain have an artificial disulfide pattern owing to truncated C-terminal construct boundaries. NgR has previously been shown to self-associate via its LRR domain, but the structural basis of this interaction remains elusive. Here, crystal structures of the NgR LRR with a longer C-terminal segment and a native disulfide pattern are presented. An additional C-terminal loop proximal to the C-terminal LRR cap is stabilized by two newly formed disulfide bonds, but is otherwise mostly unstructured in the absence of any stabilizing interactions. NgR crystallized in six unique crystal forms, three of which share a crystal-packing interface. NgR crystal-packing interfaces from all eight unique crystal forms are compared in order to explore how NgR could self-interact on the neuronal plasma membrane.



Synergy among phase-refinement techniques in macromolecular crystallography

2017-10-19

Ab initio and non-ab initio phasing methods are often unable to provide phases of sufficient quality to allow the molecular interpretation of the resulting electron-density maps. Phase extension and refinement is therefore a necessary step: its success or failure can make the difference between solution and nonsolution of the crystal structure. Today phase refinement is trusted to electron-density modification (EDM) techniques, and in practice to dual-space methods which try, via suitable constraints in direct and in reciprocal space, to generate higher quality electron-density maps. The most popular EDM approaches, denoted here as mainstream methods, are usually part of packages which assist crystallographers in all of the structure-solution steps from initial phasing to the point where the molecular model perfectly fits the known features of protein chemistry. Other phase-refinement approaches that are based on different sources of information, denoted here as out-of-mainstream methods, are not frequently employed. This paper aims to show that mainstream and out-of-mainstream methods may be combined and may lead to dramatic advances in the present state of the art. The statement is confirmed by experimental tests using molecular-replacement, SAD–MAD and ab initio techniques.



Structure and function of the thermostable l-asparaginase from Thermococcus kodakarensis

2017-10-20

l-Asparaginases catalyse the hydrolysis of asparagine to aspartic acid and ammonia. In addition, l-asparaginase is involved in the biosynthesis of amino acids such as lysine, methionine and threonine. These enzymes have been used as chemotherapeutic agents for the treatment of acute lymphoblastic leukaemia and other haematopoietic malignancies since the tumour cells cannot synthesize sufficient l-asparagine and are thus killed by deprivation of this amino acid. l-Asparaginases are also used in the food industry and have potential in the development of biosensors, for example for asparagine levels in leukaemia. The thermostable type I l-asparaginase from Thermococcus kodakarensis (TkA) is composed of 328 amino acids and forms homodimers in solution, with the highest catalytic activity being observed at pH 9.5 and 85°C. It has a Km value of 5.5 mM for l-asparagine, with no glutaminase activity being observed. The crystal structure of TkA has been determined at 2.18 Å resolution, confirming the presence of two α/β domains connected by a short linker region. The N-terminal domain contains a highly flexible β-hairpin which adopts `open' and `closed' conformations in different subunits of the solved TkA structure. In previously solved l-asparaginase structures this β-hairpin was only visible when in the `closed' conformation, whilst it is characterized with good electron density in all of the subunits of the TkA structure. A phosphate anion resides at the active site, which is formed by residues from both of the neighbouring monomers in the dimer. The high thermostability of TkA is attributed to the high arginine and salt-bridge content when compared with related mesophilic enzymes.



Crystal structures of serum albumins from domesticated ruminants and their complexes with 3,5-diiodosalicylic acid

2017-10-25

Serum albumin (SA) is the most abundant protein in plasma and is the main transporter of molecules in the circulatory system of all vertebrates, with applications in medicine, the pharmaceutical industry and molecular biology. It is known that albumins from different organisms vary in sequence; thus, it is important to know the impact of the amino-acid sequence on the three-dimensional structure and ligand-binding properties. Here, crystal structures of ovine (OSA) and caprine (CSA) serum albumins, isolated from sheep and goat blood, are described, as well those of their complexes with 3,5-diiodosalicylic acid (DIS): OSA–DIS (2.20 Å resolution) and CSA–DIS (1.78 Å resolution). The ligand-free OSA structure was determined in the trigonal space group P3221 at 2.30 Å resolution, while that of CSA in the orthorhombic space group P212121 was determined at 1.94 Å resolution. Both albumins are also capable of crystallizing in the triclinic space group P1, giving isostructural crystals that diffract to around 2.5 Å resolution. A comparison of OSA and CSA with the closely related bovine serum albumin (BSA) shows both similarities and differences in the distribution of DIS binding sites. The investigated serum albumins from domesticated ruminants in their complexes with DIS are also compared with the analogous structures of equine and human serum albumins (ESA–DIS and HSA–DIS). Surprisingly, despite 98% sequence similarity, OSA binds only two molecules of DIS, whereas CSA binds six molecules of this ligand. Moreover, the binding of DIS to OSA and CSA introduced changes in the overall architecture of the proteins, causing not only different conformations of the amino-acid side chains in the binding pockets, but also a significant shift of the whole helices, changing the volume of the binding cavities.



Structural basis of antigen recognition: crystal structure of duck egg lysozyme

2017-10-25

Duck egg lysozyme (DEL) is a widely used model antigen owing to its capacity to bind with differential affinity to anti-chicken egg lysozyme antibodies. However, no structures of DEL have so far been reported, and the situation had been complicated by the presence of multiple isoforms and conflicting reports of primary sequence. Here, the structures of two DEL isoforms from the eggs of the commonly used Pekin duck (Anas platyrhynchos) are reported. Using structural analyses in combination with mass spectrometry, non-ambiguous DEL primary sequences are reported. Furthermore, the structures and sequences determined here enable rationalization of the binding affinity of DEL for well documented landmark anti-lysozyme antibodies.



The crystal structure of the Yersinia pestis iron chaperone YiuA reveals a basic triad binding motif for the chelated metal

2017-10-26

Biological chelating molecules called siderophores are used to sequester iron and maintain its ferric state. Bacterial substrate-binding proteins (SBPs) bind iron–siderophore complexes and deliver these complexes to ATP-binding cassette (ABC) transporters for import into the cytoplasm, where the iron can be transferred from the siderophore to catalytic enzymes. In Yersinia pestis, the causative agent of plague, the Yersinia iron-uptake (Yiu) ABC transporter has been shown to improve iron acquisition under iron-chelated conditions. The Yiu transporter has been proposed to be an iron–siderophore transporter; however, the precise siderophore substrate is unknown. Therefore, the precise role of the Yiu transporter in Y. pestis survival remains uncharacterized. To better understand the function of the Yiu transporter, the crystal structure of YiuA (YPO1310/y2875), an SBP which functions to present the iron–siderophore substrate to the transporter for import into the cytoplasm, was determined. The 2.20 and 1.77 Å resolution X-ray crystal structures reveal a basic triad binding motif at the YiuA canonical substrate-binding site, indicative of a metal-chelate binding site. Structural alignment and computational docking studies support the function of YiuA in binding chelated metal. Additionally, YiuA contains two mobile helices, helix 5 and helix 10, that undergo 2–3 Å shifts across crystal forms and demonstrate structural breathing of the c-clamp architecture. The flexibility in both c-clamp lobes suggest that YiuA substrate transfer resembles the Venus flytrap mechanism that has been proposed for other SBPs.



Four highly pseudosymmetric and/or twinned structures of d(CGCGCG)2 extend the repertoire of crystal structures of Z-DNA

2017-10-30

DNA oligomer duplexes containing alternating cytosines and guanines in their sequences tend to form left-handed helices of the Z-DNA type, with the sugar and phosphate backbone in a zigzag conformation and a helical repeat of two successive nucleotides. Z-DNA duplexes usually crystallize as hexagonally arranged parallel helical tubes, with various relative orientations and translation of neighboring duplexes. Four novel high-resolution crystal structures of d(CGCGCG)2 duplexes are described here. They are characterized by a high degree of pseudosymmetry and/or twinning, with three or four independent duplexes differently oriented in a monoclinic P21 lattice of hexagonal metric. The various twinning criteria give somewhat conflicting indications in these complicated cases of crystal pathology. The details of molecular packing in these crystal structures are compared with other known crystal forms of Z-DNA.