Subscribe: Acta Crystallographica Section A
http://journals.iucr.org/a/rss10.xml
Added By: Feedage Forager Feedage Grade B rated
Language: English
Tags:
crystals  data  diffraction  experimental  high resolution  high  model  phase  ray diffraction  ray  sample  single  technique  twinning 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: Acta Crystallographica Section A

Acta Crystallographica Section A



Acta Crystallographica Section A: Foundations and Advances covers theoretical and fundamental aspects of the structure of matter. The journal is the prime forum for research in diffraction physics and the theory of crystallographic structure determination



Published: 2017-06-29

 






Three-dimensional single-cell imaging with X-ray waveguides in the holographic regime

2017-06-29

X-ray tomography at the level of single biological cells is possible in a low-dose regime, based on full-field holographic recordings, with phase contrast originating from free-space wave propagation. Building upon recent progress in cellular imaging based on the illumination by quasi-point sources provided by X-ray waveguides, here this approach is extended in several ways. First, the phase-retrieval algorithms are extended by an optimized deterministic inversion, based on a multi-distance recording. Second, different advanced forms of iterative phase retrieval are used, operational for single-distance and multi-distance recordings. Results are compared for several different preparations of macrophage cells, for different staining and labelling. As a result, it is shown that phase retrieval is no longer a bottleneck for holographic imaging of cells, and how advanced schemes can be implemented to cope also with high noise and inconsistencies in the data.



High-resolution X-ray diffraction with no sample preparation

2017-06-29

It is shown that energy-dispersive X-ray diffraction (EDXRD) implemented in a back-reflection geometry is extremely insensitive to sample morphology and positioning even in a high-resolution configuration. This technique allows high-quality X-ray diffraction analysis of samples that have not been prepared and is therefore completely non-destructive. The experimental technique was implemented on beamline B18 at the Diamond Light Source synchrotron in Oxfordshire, UK. The majority of the experiments in this study were performed with pre-characterized geological materials in order to elucidate the characteristics of this novel technique and to develop the analysis methods. Results are presented that demonstrate phase identification, the derivation of precise unit-cell parameters and extraction of microstructural information on unprepared rock samples and other sample types. A particular highlight was the identification of a specific polytype of a muscovite in an unprepared mica schist sample, avoiding the time-consuming and difficult preparation steps normally required to make this type of identification. The technique was also demonstrated in application to a small number of fossil and archaeological samples. Back-reflection EDXRD implemented in a high-resolution configuration shows great potential in the crystallographic analysis of cultural heritage artefacts for the purposes of scientific research such as provenancing, as well as contributing to the formulation of conservation strategies. Possibilities for moving the technique from the synchrotron into museums are discussed. The avoidance of the need to extract samples from high-value and rare objects is a highly significant advantage, applicable also in other potential research areas such as palaeontology, and the study of meteorites and planetary materials brought to Earth by sample-return missions.



A first-prototype multi-determinant X-ray constrained wavefunction approach: the X-ray constrained extremely localized molecular orbital–valence bond method

2017-05-09

All the current variants of Jayatilaka's X-ray constrained wavefunction (XCW) approach work within the framework of the single-determinant wavefunction ansatz. In this paper, a first-prototype multi-determinant XCW technique is proposed. The strategy assumes that the desired XCW is written as a valence-bond-like expansion in terms of pre-determined single Slater determinants constructed with extremely localized molecular orbitals. The method, which can be particularly suitable to investigate systems with a multi-reference character, has been applied to determine the weights of the resonance structures of naphthalene at different temperatures by exploiting experimental high-resolution X-ray diffraction data. The results obtained have shown that the explicit consideration of experimental structure factors in the determination of the resonance structure weights may lead to results significantly different compared with those resulting only from the simple energy minimization.



Reduction of small-angle scattering profiles to finite sets of structural invariants

2017-06-09

This paper shows how small-angle scattering (SAS) curves can be decomposed in a simple sum using a set of invariant parameters called Kn which are related to the shape of the object of study. These Kn, together with a radius R, give a complete theoretical description of the SAS curve. Adding an overall constant, these parameters are easily fitted against experimental data giving a concise comprehensive description of the data. The pair distance distribution function is also entirely described by this invariant set and the Dmax parameter can be measured. In addition to the understanding they bring, these invariants can be used to reliably estimate structural moments beyond the radius of gyration, thereby rigorously expanding the actual set of model-free quantities one can extract from experimental SAS data, and possibly paving the way to designing new shape reconstruction strategies.



Thermoelectric transport properties in magnetically ordered crystals

2017-06-09

The forms of the tensors describing thermoelectric transport properties in magnetically ordered crystals are given for frequently used orientations of the 122 space-time point groups up to second order in an applied magnetic field. It is shown which forms are interchanged for the point groups of the hexagonal crystal family by two different conventions for the connection between the Hermann–Mauguin symbol and the orientation of the Cartesian coordinate system. The forms are given in Nye notation, which conspicuously shows how the forms for different point groups are related. It is shown that the measurable effects in magnetically ordered crystals can be decomposed into an effect occurring in all crystals and one coming from the magnetic ordering. Errors in the literature are pointed out.



Hard-sphere displacive model of deformation twinning in hexagonal close-packed metals. Revisiting the case of the (56°, a) contraction twins in magnesium

2017-06-21

Contraction twinning in magnesium alloys leads to new grains that are misoriented from the parent grain by a rotation (56°, a). The classical shear theory of deformation twinning does not specify the atomic displacements and does not explain why contraction twinning is less frequent than extension twinning. The paper proposes a new displacive model in line with our previous work on martensitic transformations and extension twinning. A continuous angular distortion matrix that transforms the initial hexagonal close-packed (h.c.p.) crystal into a final h.c.p. crystal is determined such that the atoms move as hard spheres and reach the final positions expected by the orientation relationship. The calculations prove that the distortion is not a simple shear when it is considered in its continuity. The ({0{\overline 1}1}) plane is untilted and restored, but it is not fully invariant because some interatomic distances in this plane evolve during the distortion process; the unit volume also increases up to 5% before coming back to its initial value when the twinning distortion is complete. Then, the distortion takes the form of a simple shear on the ({0{\overline 1}1}) plane with a shear along the direction [{18,{\overline 5},{\overline 5}}] of amplitude 0.358. Experiments are proposed to validate or disprove the model.



Close-packed structures with finite-range interaction: computational mechanics of layer pair interaction

2017-06-29

The stacking problem is approached by computational mechanics, using an Ising next-nearest-neighbour model. Computational mechanics allows one to treat the stacking arrangement as an information processing system in the light of a symbol-generating process. A general method for solving the stochastic matrix of the random Gibbs field is presented and then applied to the problem at hand. The corresponding phase diagram is then discussed in terms of the underlying ∊-machine, or optimal finite-state machine. The occurrence of higher-order polytypes at the borders of the phase diagram is also analysed. The applicability of the model to real systems such as ZnS and cobalt is discussed. The method derived is directly generalizable to any one-dimensional model with finite-range interaction.