Subscribe: Fight Aging!
Added By: Feedage Forager Feedage Grade A rated
Language: English
age related  age  aging  cartilage  cell  fight aging  inflammation  life  mitochondrial  related  research  researchers  sens  tissue 
Rate this Feed
Rating: 3 starRating: 3 starRating: 3 starRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: Fight Aging!

Fight Aging!

Reports from the front line in the fight against aging. The science of healthy life extension. Activism and advocacy for longer, healthier lives.

Last Build Date: Tue, 25 Oct 2016 11:55:30 +0000


Evidence for High Cholesterol to Contribute to Osteoarthritis

Tue, 25 Oct 2016 11:54:11 +0000

Researchers here report on a study in mice that suggests high blood cholesterol levels contribute to the progression of osteoarthritis, a degenerative condition of bone and cartilage in the joints. It is well known that high cholesterol is bad for health in a variety of other ways, and is one of the mechanisms linking conditions like obesity, metabolic syndrome, and diabetes to higher mortality rates. It speeds progression of atherosclerosis, for example, in which fatty deposits build up in blood vessels. The association with osteoarthritis is fairly new, however, and the researchers here suggest that mitochondrial dysfunction and oxidative stress are the mechanisms of interest in this relationship. The contribution of metabolic factors on the severity of osteoarthritis (OA) is not fully appreciated. This study […]

Lower IGF-1 Correlates with Better Cognition in Elderly Women

Tue, 25 Oct 2016 11:11:38 +0000

Researchers have for some years now studied the biochemistry and genetics of exceptional human longevity in a long-lived population of Ashkenazi Jews. In the recent paper noted here, the authors find an association between IGF-1, which is well-studied in the context of aging and natural variations in life span, and cognitive ability in the elderly. In this context, it is interesting to look back at the results of past studies on IGF-1, such as the demonstration that lower levels predict survival in women only, and observations of increased mouse life span due to lowered IGF-1. If you want to lower IGF-1 yourself, the best way to go about it is to practice calorie restriction for the long-term. Calorie restriction is known to improve health and […]

Starting November 1st: Become a SENS Patron and We'll Match a Year of Donations

Tue, 25 Oct 2016 00:50:31 +0000

The 2016 year-end SENS rejuvenation research fundraiser starts next week, on November 1st. For those who give to charitable causes at the end of the year, which turns out to be a fair number of people, this is a chance to help speed progress towards therapies that can address the root causes of degenerative aging, that can postpone and turn back age-related disease, and that can greatly extend healthy life span. This is not a pipe dream! These therapies, as well the required research and development programs, are envisaged in great detail, and the first of them are already in the earliest stages of commercial development. To all of you reading this, I ask that on November 1st you show your support for continued progress […]

Evidence for the Importance of Mitochondrial Function in Rat Longevity

Mon, 24 Oct 2016 13:03:27 +0000

There is a lot of evidence to indicate the great importance of mitochondria, the power plants of the cell, in aging and longevity. Mitochondrial composition and resistance to oxidative damage correlates well with the varied life spans of different mammalian species, for example. Many measures of mitochondrial activity and function correlate with natural variations in longevity within a species, such as the balance between ongoing mitochondrial fission and fusion examined in the paper here. Taken together, these are signposts that should lead us to prioritize work on the SENS approach to making mitochondria resistant to damage and dysfunction. Mitochondria have their own DNA, separate from that in the cell nucleus, and it can become damaged in ways that produce spreading cellular malfunctions and consequent oxidative […]

Generating Cartilage Grafts with Properties Closer to those of Natural Cartilage

Mon, 24 Oct 2016 12:15:44 +0000

Cartilage tissue wears with age, and this is a significant source of issues for older people. The challenge in cartilage tissue engineering lies in the structural properties of the tissue. Researchers have struggled to find a methodology for culturing three-dimensional tissue that recaptures a significant portion of the load-bearing strength and resilience of natural cartilage. Some inroads have been made, however, and in the research here, a better quality of graft is produced: Articular cartilage is the tissue on the end of a bone that cushions the surface of the joint and is vital for painless movement. Because the tissue doesn't have its own blood supply, it has limited capacity to repair itself once damaged, leading to degenerative joint conditions like osteoarthritis. Traditional methods to […]

Fight Aging! Newsletter, October 24th 2016

Sun, 23 Oct 2016 11:56:52 +0000

Fight Aging! provides a weekly digest of news and commentary for thousands of subscribers interested in the latest longevity science: progress towards the medical control of aging in order to prevent age-related frailty, suffering, and disease, as well as improvements in the present understanding of what works and what doesn't work when it comes to extending healthy life. Expect to see summaries of recent advances in medical research, news from the scientific community, advocacy and fundraising initiatives to help speed work on the repair and reversal of aging, links to online resources, and much more. This content is published under the Creative Commons Attribution 3.0 license. You are encouraged to republish and rewrite it in any way you see fit, the only requirements being that […]

Nauk1 Inhibition as a Treatment for Tauopathies

Sat, 22 Oct 2016 00:06:37 +0000

Tauopathies are conditions in which altered forms of tau protein accumulate into solid deposits in the brain. How this causes cell death and dysfunction is comparatively poorly understood, or at least well debated, but researchers are making inroads into mapping the relevant mechanisms. As is the case for other types of misfolded or altered protein that show up in aged tissues, it isn't so much the protein itself, but rather aspects of the surrounding processes that are the cause of harm. Still, getting rid of the altered tau would be a good way to reduce all of these problems, even in absence of understanding: young tissues don't have tau and work just fine, old tissues do have it and don't work so well, and the […]

Why the Lingering Pockets of Hostility Towards SENS Rejuvenation Research?

Fri, 21 Oct 2016 11:42:46 +0000

There are still people who really don't like SENS rejuvenation research, both within and outside the scientific community. This contingent has faded over time as the funding for SENS-related research programs increased and more teams produced meaningful results in SENS-related areas such as allotopic expression of mitochondrial genes and senescent cell clearance. There are numerous research groups working on aspects of that latter project at the moment, as well as funded startup companies moving towards clinical translation of therapies. These days one has to have a very selective memory and view of the world to mock SENS, since the SENS proposals have included senescent cell clearance as a potential treatment for aging since the beginning, based on the broad range of evidence available in the […]

Exploring the Mechanisms of Neural Regeneration in Zebrafish

Fri, 21 Oct 2016 10:56:54 +0000

Highly regenerative species such as zebrafish can regrow limbs and organs, and are also capable of far greater regrowth in response to damage in the brain than is the case in mammals. Researchers here explore the mechanisms involved in the zebrafish response to an Alzheimer's-like environment and neural cell death. As is the case for many research projects involving zebrafish, the goal is to pin down enough of the biochemistry of exceptional regeneration to understand how it differs from humans, and thus how this capability might be recreated in our species. Zebrafish have an extensive ability to replenish the lost neurons after various types of damage, and the researchers have shown that it can also do so after Alzheimer-like neurodegeneration. This is an ability humans […]

A Significant Association Between Periodontal Bacteria and Mortality Rates

Fri, 21 Oct 2016 01:45:35 +0000

It is fairly settled that periodontal disease, inflammation of the gums, increases the risk of developing cardiovascular disease, among other conditions. Chronic inflammation drives faster progression of all of the common age-related diseases, and gum disease is a potent source of inflammation. To pick one example from the many supporting research results, you might look to a recent study that demonstrated reduced markers of chronic inflammation achieved through nothing more than better dental hygiene. People better equipped to remove dental plaque on a daily basis exhibited reduced inflammation as a result, and that reduced inflammation will translate to a modestly lower risk and severity of a range of age-related conditions. If you dig further in the Fight Aging! archives, you'll find all sorts of unpleasant […]