Subscribe: Fight Aging!
http://fightaging.org/index.xml
Added By: Feedage Forager Feedage Grade A rated
Language: English
Tags:
age related  cell  cells  cellular senescence  hair follicle  hair  heart  research  senescent cells  senescent  stem cell  stem  tissue 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: Fight Aging!

Fight Aging!



Reports from the front line in the fight against aging. The science of healthy life extension. Activism and advocacy for longer, healthier lives.



Last Build Date: Sat, 19 Aug 2017 12:52:10 +0000

 



Exercise Restores Failing Autophagy in Damaged Heart Tissue

Sat, 19 Aug 2017 00:35:38 +0000

Despite the very promising progress in aging research that has taken place since the turn of the century, it remains the case that exercise and calorie restriction are still the most reliable and beneficial methods of improving long-term health and life expectancy. That should cease to be true a few years from now when the first senolytic drug candidates are better categorized and more easily available, but for today the oldest of free methodologies have a better expectation value than anything you might consider paying for. Precisely because these effects are reliable, and to a lesser degree because present medical approaches to treating age-related disease are expensive and marginal, the research community is interested in reverse engineering the changes in metabolism brought on by exercise […]



A Successful Trial of Gene Therapy to Spur Vascular Growth in Heart Disease

Fri, 18 Aug 2017 13:02:17 +0000

One approach to the structural damage that takes place in heart disease is to attempt to spur growth of new blood vessels, to deliver nutrients to heart tissue that is currently poorly supplied. Gene therapy is in principle well suited to this goal, as a range of genes are known to be involved in regulating the processes of blood vessel generation. So far attempts to create a viable treatment haven't gone so well, unfortunately, but here researchers report success in a recent trial. The results seem promising. At the high level, this approach doesn't address the underlying causes of the situation, the various degenerative processes that give rise to heart disease and structural failure of important tissues in the first place, but when effective it […]



Bacteria Promote Cancer by Enhancing Stem Cell Replication and Turnover

Fri, 18 Aug 2017 12:25:51 +0000

Bacterial infection has been linked to cancer risk in some cases, and here researchers propose that this is because the bacterial species can cause some stem cell populations to replicate more frequently. Greater cell activity in this fashion over time raises the risk of a cancerous mutation occurring. The authors of the study examine only the one case in which a bacteria-cancer association is well studied, but we might speculate on similar situations elsewhere in the body. While it has long been recognized that certain viruses can cause cancer by inserting oncogenes into the host cell DNA, the fact that some bacteria can also cause cancer has been slower to emerge and much harder to prove. While it is now clear that most cases of […]



Cell Banking for Future Autologous Cell Therapies Seems Pointless

Fri, 18 Aug 2017 00:35:39 +0000

I'll start here by pointing out the most useful application for cryopreservation of cells and tissues: it greatly reduces the cost of logistics in transplant medicine. When you need to coordinate people and cells and places on timescales of a few days, weeks, or months, the ability to confidently put the cells into safe storage for short period of time changes the whole tenor of the affair. Just look at the organ transplant field, for example, which is defined by the fact that this storage cannot yet be achieved. Organ transplantation is enormously expensive not just because the donor pool is limited, but also because organs cannot be kept alive and useful for very long outside the body. When the state of reversible tissue crypopreservation […]



Towards Efficiency in Uncovering all Potential Longevity-Altering Substances

Thu, 17 Aug 2017 13:23:27 +0000

The research community is moving, slowly and incrementally, towards a world in which drug libraries become vastly larger and more useful because it should be possible to use computational techniques to far more efficiently (a) predict the effects of specific compounds on specific biological mechanisms, and (b) design similar, better compounds. Much of the trial and error, and thus most of the cost of drug discovery will go away. The result will be a pharmaceutical development processes that is still definitely of a trial and error nature at its core, but much more informed, far removed from the blind fumbling and chance discovery of the past. Insilico Medicine is a business community example of progress towards this goal, and the open access paper noted here […]



An Injected Tissue Engineered Heart Patch

Thu, 17 Aug 2017 12:38:51 +0000

Tissue engineers are still limited in the size of tissues they can produce, as there remains no reliable solution for the generation of capillary networks. The thickness of tissue that can be constructed is thus limited to the distance that nutrients can perfuse in the absence of capillaries. The production of thin sheets is viable under these constraints, and a number of research groups are investigating methods of spurring heart regeneration by applying a sheet - a patch - of suitable cells onto the exterior of this organ. The research noted here is an example of the type, merging this line of work with efforts to produce tissue scaffolds that can be injected, rather than requiring surgery to implant. Repairing heart tissue destroyed by a […]



Macrophages Showing Markers of Cellular Senescence may not be Senescent Cells

Thu, 17 Aug 2017 01:38:06 +0000

Cellular senescence is one of the causes of aging: rising numbers of cells fall into a harmful senescent state and then linger there. The activities of these cells directly contribute to loss of tissue function and the progression of many age-related diseases. You might recall last year's investigations into possible cellular senescence in the immune system, focused on macrophages that exhibit some of the markers used to identify senescent cells. Does this mean that part of the macrophage population is in fact senescent in older people, and they would benefit from the removal of those cells, as is the case for other senescent cell types, or does it mean something else entirely, and these cells may not be harmful? In the open access paper here, […]



Activating Hair Follicle Stem Cells to Enhance Hair Growth

Wed, 16 Aug 2017 11:08:48 +0000

This work, I think, is not significant for the hair growth, but for the fact that the researchers involved have found a simple way to enhance the activity of a stem cell population. It suggests that the research community might expect to find analogous (but probably quite different) simple ways to selectively achieve the same outcome in other stem cell populations that support other tissue types. Losing hair is somewhere in the vicinity of inconvenient and annoying. There are any number of other tissues in which the age-related decline of stem cell activity is ultimately fatal, and those seem to me to be the more important challenges to focus upon. Hair follicle stem cells are long-lived cells in the hair follicle; they are present in […]



A Hair Follicle Recipe for Skin Organoids

Wed, 16 Aug 2017 10:46:29 +0000

Researchers here describe a new recipe for guiding skin cells to form organoids and generate hair follicles. A fair amount of tissue engineering is the search for reliable recipes, different for every tissue type. Once established such recipes can be used to enable the production of specific cell and tissue types for research and transplantation, or to inform the development of therapies to encourage the same processes of regrowth to take place in the body, without the need for transplantation. How does the skin develop follicles and eventually sprout hair? A new study addresses this question using insights gleaned from organoids, 3D assemblies of cells possessing rudimentary skin structure and function - including the ability to grow hair. Scientists started with dissociated skin cells from […]



Oxidative Stress and Cellular Senescence in the Progression of Osteoarthritis

Wed, 16 Aug 2017 00:54:05 +0000

Osteoarthritis is a common age-related degenerative joint condition in which cartilage and bone are lost, though in the earlier stages of the condition, changes in cartilage are more subtle and complicated in their effects. While not traditionally seen as an inflammatory condition, as there is no evident, visible joint inflammation as occurs in other forms of arthritis, there is nonetheless a strong case for considering osteoarthritis to be driven by localized inflammation. Recently, the increased number of senescent cells in aged joint tissue has been shown to contribute directly to the development of osteoarthritis. Indeed, osteoarthritis will be near the top of the list of conditions that Unity Biotechnology plans to treat with senolytic drugs capable of selectively destroy senescent cells. These unwanted cells generate […]