Subscribe: Untitled
http://www.freepatentsonline.com/rssfeed/rsspat568.xml
Added By: Feedage Forager Feedage Grade B rated
Language: English
Tags:
acetic acid  acid  alcohol  catalyst  compound  comprising  ethanol  metal  method  polyether polyol  process  product  reaction 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: Untitled

Untitled





 



Washing system for nitroaromatic compounds

Tue, 26 May 2015 08:00:00 EDT

A method of removing alkalinity and salt from a nitroaromatic product downstream of water washing to remove mineral acids and alkaline washing to remove salts of organic acids, comprises washing the product stream with an acidic aqueous solution, prior to the step of removing excess organic reactant, by steam stripping or distillation. Acid removed from the stripper or column is recycled back for use in the acidic washing. The acidic washing is done instead of the neutral washing step of the prior art. It removes residual salt and decreases the level of entrained colloidal water in the nitroaromatic product.



Synthesis of high caloric fuels and chemicals

Tue, 26 May 2015 08:00:00 EDT

In one embodiment, the present application discloses methods to selectively synthesize higher alcohols and hydrocarbons useful as fuels and industrial chemicals from syngas and biomass. Ketene and ketonization chemistry along with hydrogenation reactions are used to synthesize fuels and chemicals. In another embodiment, ketene used to form fuels and chemicals may be manufactured from acetic acid which in turn can be synthesized from synthesis gas which is produced from coal, biomass, natural gas, etc.



Process for producing 1,4-butanediol by hydrogenating dialkyl maleate in mixed liquid/vapor phase

Tue, 26 May 2015 08:00:00 EDT

A process for the production of 1,4-butanediol and tetrahydrofuran by catalytic hydrogenation of dialkyl maleates includes the following steps: a) hydrogenating a stream of dialkyl maleate in a first stage of reaction over suitable catalysts to produce dialkyl succinate;b) further hydrogenating the dialkyl succinate in a second stage of reaction, by using a different suitable catalyst, for producing mainly 1,4-butanediol, together with gamma-butyrolactone and tetrahydrofuran as co-products. In both stages of reaction the conditions, as hydrogen/organic feed ratio, pressure and temperature, are such to maintain the reactors in mixed liquid/vapor phase.



Hydrogenation of styrene oxide forming 2-phenyl ethanol

Tue, 26 May 2015 08:00:00 EDT

A process for preparation of 2-phenyl ethanol by catalytic hydrogenation of styrene oxide using a catalyst consisting of Pd (II) on basic inorganic support is investigated. The present invention comprises development of new Pd based catalysts. The present method yields 2-phenyl ethanol in 98% selectivity at total conversion of styrene oxide. The present process represents an environment friendly alternative to conventionally used methods in industry and eliminates the reduction step for catalyst preparation. In the present invention the active catalyst is generated in situ during the hydrogenation of styrene oxide. In addition, Pd (II) supported catalysts do not catch fire (non pyrophoric), can be stored under ambient conditions and produce very less or no dust which makes said catalysts suitable for industrial application.



Product recovery process in the filtration of polyether polyols

Tue, 26 May 2015 08:00:00 EDT

An improved method for recovering a purified polyether polyol comprising the steps of providing an aqueous solution of a polyether polyol containing an alkali metal catalyst residual formed from a transesterification process, contacting the aqueous solution with a stoichiometric excess of magnesium sulfate to form a second aqueous solution, removing water from said second aqueous solution at a temperature above the melt temperature of said polyether polyol to produce a dehydrated slurry containing a molten polyether polyol phase essentially free of residual alkali metal and a precipitated solid phase comprising sulfate and/or sulfite salts of the alkali metal catalyst, magnesium hydroxide, and excess magnesium sulfate and/or sulfide, passing the dehydrated slurry of through a filtration system comprising a filtration press to separate the molten polyether polyol phase from the precipitated solid phase, wherein the filtration press is treated with a filter aid that is essentially free of transition metal oxide content, separating the molten polyether polyol phase substantially free of water, residual alkali metal catalyst and transition metal contaminants from the precipitated solid phase and recovering polyether polyol from the separated polyether polyol phase.



Polymer recovery process in the filtration of polyether polyols

Tue, 26 May 2015 08:00:00 EDT

A filtration method is disclosed for recovering purified polyether polyol comprising the steps of providing an aqueous solution of a polyether polyol containing an alkali metal catalyst residual formed from a transesterification process utilizing an alkali metal catalyst, contacting the aqueous solution with a stoichiometric excess of magnesium sulfate, magnesium sulfite or a combination thereof to form a second aqueous solution, wherein said stoichiometric excess is based on the amount of said alkali metal catalyst residual. Water is removed from the second aqueous solution at a temperature above a set limit of said polyether polyol to produce a dehydrated slurry containing a polyether polyol phase substantially free of residual alkali metal and a precipitated solid phase comprising sulfate and/or sulfite salts of the alkali metal catalyst, magnesium hydroxide, and excess magnesium sulfate and/or sulfite, wherein the particle size distribution of said precipitated solid phase is controlled to minimize the amount of particles therein that are smaller than 3 microns. The dehydrated slurry is then passed through a filtration system to separate the polyether polyol phase from the precipitated solid phase.



Process for producing ketones from fatty acids

Tue, 26 May 2015 08:00:00 EDT

The invention relates to a process for producing ketones or hydrocarbon base oil from fatty acids preferably derived from a biological origin or other renewable source. The process is directed at making an aliphatic ketone or a mixture of aliphatic ketones having 14 to 52 carbon atoms, comprising a ketonization reaction of a fatty acid in a vapor phase with a decarboxylation-coupling catalyst to provide ketones, which can be deoxygenated to give saturated hydrocarbons, unsaturated hydrocarbons, and mixtures thereof. Base oils and transportation fuels may be produced from the process herein.



Hydrocarboxylation of aqueous formaldehyde using a dehydrating recycle stream to decrease water concentration

Tue, 26 May 2015 08:00:00 EDT

Disclosed is a process for the production and purification of glycolic acid or glycolic acid derivatives by the carbonylation of aqueous formaldehyde. The water in the hydrocarboxylation zone is reduced via reaction with the ester bonds in a recycle stream comprising glycolic acid oligomers and/or methyl glycolate oligomers.



Catalysts for making ethanol from acetic acid

Tue, 26 May 2015 08:00:00 EDT

Catalysts and processes for forming catalysts for use in hydrogenating acetic acid to form ethanol. In one embodiment, the catalyst comprises a first metal, a silicaceous support, and at least one metasilicate support modifier. Preferably, the first metal is selected from the group consisting of copper, iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, platinum, titanium, zinc, chromium, rhenium, molybdenum, and tungsten. In addition the catalyst may comprise a second metal preferably selected from the group consisting of copper, molybdenum, tin, chromium, iron, cobalt, vanadium, tungsten, palladium, platinum, lanthanum, cerium, manganese, ruthenium, rhenium, gold, and nickel.



Method of preparing functionalized graphene

Tue, 26 May 2015 08:00:00 EDT

A method of preparing functionalized graphene, comprises treating graphene with an alkali metal in the presence of an electron transfer agent and coordinating solvent, and adding a functionalizing compound. The method further includes quenching unreacted alkali metal by addition of a protic medium, and isolating the functionalized graphene.



Continuous process for conversion of lignin to useful compounds

Tue, 19 May 2015 08:00:00 EDT

This specification discloses an operational continuous process to convert lignin as found in ligno-cellulosic biomass before or after converting at least some of the carbohydrates. The continuous process has been demonstrated to create a slurry comprised of lignin, raise the slurry comprised of lignin to ultra-high pressure, deoxygenate the lignin in a lignin conversion reactor over a catalyst which is not a fixed bed without producing char. The conversion products of the carbohydrates or lignin can be further processed into polyester intermediates for use in polyester preforms and bottles.



Process for heat integration in the hydrogenation and distillation of C3—C20-aldehydes

Tue, 19 May 2015 08:00:00 EDT

The present invention relates to a process for heat integration in the preparation of saturated C3-C20-alcohols, in which a hydrogenation feed comprising at least one C3-C20-aldehyde is hydrogenated in the presence of a hydrogen-comprising gas in a hydrogenation zone and a discharge is taken off from the hydrogenation zone and subjected to distillation in at least one distillation column to give a fraction enriched in saturated C3-C20-alcohols.



Process for production of hexamethylenediamine from carbohydrate-containing materials and intermediates therefor

Tue, 19 May 2015 08:00:00 EDT

Processes are disclosed for the conversion of a carbohydrate source to hexamethylenediamine (HMDA) and to intermediates useful for the production of hexamethylenediamine and other industrial chemicals. HMDA is produced by direct reduction of a furfural substrate to 1,6-hexanediol in the presence of hydrogen and a heterogeneous reduction catalyst comprising Pt or by indirect reduction of a furfural substrate to 1,6-hexanediol wherein 1,2,6-hexanetriol is produced by reduction of the furfural substrate in the presence of hydrogen and a catalyst comprising Pt and 1,2,6-hexanediol is then converted by hydrogenation in the presence of a catalyst comprising Pt to 1,6 hexanediol, each process then proceeding to the production of HMDA by known routes, such as amination of the 1,6 hexanediol. Catalysts useful for the direct and indirect production of 1,6-hexanediol are also disclosed.



Method for preparing chlorohydrins composition and method for preparing epichlorohydrin using chlorohydrins composition prepared thereby

Tue, 19 May 2015 08:00:00 EDT

Provided are a method of preparing a chlorohydrin composition and a method of preparing epichlorohydrin by using a chlorohydrin composition prepared by using the method. The method of preparing chlorohydrins in which polyhydroxy aliphatic hydrocarbon is reacted with a chlorination agent in the presence of a catalyst includes performing at least one combination of a series of unit operations comprising a first reaction step, a water removal step, and a second reaction step in this stated order, wherein the method further includes mixing a chlorohydrin concentrate obtained by purifying the reaction mixture discharged from the final reaction step from among the reaction steps and a water-rich layer discharged from the water-removal step and diluting the mixture with water. The method of preparing epichlorohydrin includes contacting the chlorohydrin composition prepared by using the method of preparing a chlorohydrin composition with an alkaline agent.



Dehydrogenation process

Tue, 19 May 2015 08:00:00 EDT

In a process for the dehydrogenation of dehydrogenatable hydrocarbons, a feed comprising dehydrogenatable hydrocarbons is contacted with a catalyst comprising a support and a dehydrogenation component under dehydrogenation conditions effective to convert at least a portion of the dehydrogenatable hydrocarbons in the feed. The catalyst is produced by a method comprising treating the support with a liquid composition comprising the dehydrogenation component or a precursor thereof and at least one organic dispersant selected from an amino alcohol and an amino acid.



Method for the hydroxylation of phenols and phenol ethers

Tue, 19 May 2015 08:00:00 EDT

The present invention relates to a method for the hydroxylation of phenols and phenol ethers by means of hydrogen peroxide. The invention specifically relates to a method for the hydroxylation of phenol by means of the hydrogen peroxide. The method of the invention for the hydroxylation of a phenol or phenol ether by means of reacting said phenol or phenol ether with the hydrogen peroxide in the presence of an acid catalyst is characterized in that it includes mixing a phenol or phenol ether with a hydrogen peroxide solution in a mixing device under conditions enabling the conversion rate of the hydrogen peroxide to be minimized, and in that said reaction mixture is then placed in a piston flow reactor where the reaction leading to the production of the hydroxylated material takes place, the acid catalyst being fed into the mixing device and/or into the piston flow reactor.



Process for the in situ production of polyether polyols based on renewable materials and their use in the production of flexible polyurethane foams

Tue, 19 May 2015 08:00:00 EDT

A polyether polyol based on renewable materials is obtained by the in situ production of a polyether from a hydroxyl group-containing vegetable oil, at least one alkylene oxide and a low molecular weight polyol having at least 2 hydroxyl groups. The polyol is produced by introducing the hydroxyl group-containing vegetable oil, a catalyst and an alkylene oxide to a reactor and initiating the alkoxylation reaction. After the alkoxylation reaction has begun but before the reaction has been 20% completed, the low molecular weight polyol having at least 2 hydroxyl groups is continuously introduced into the reactor. After the in situ made polyether polyol product having the desired molecular weight has been formed, the in situ made polyether polyol is removed from the reactor. These polyether polyols are particularly suitable for the production of flexible polyurethane foams.



Process for making polyglycerol ethers of fatty alcohols

Tue, 19 May 2015 08:00:00 EDT

Disclosed are processes relating to the production of polyglycerol ethers of fatty alcohols, in particular, one step process using fatty alcohol and glycerine to synthesize polyglycerides of fatty alcohols will provide a 100% renewable surfactant that is cost effective efficient and CMR free. The synthetic methods mentioned in prior art uses hazardous chemicals as glycidyl ethers, epichlorohydrin that are listed as CMR and known carcinogens and hazardous to handle.



Optical resolution methods for bicyclic compounds using asymmetric catalysts

Tue, 19 May 2015 08:00:00 EDT

An optically active bicyclic compound is efficiently produced by optical resolution using an optically active amine.



Hydrolysis of the residues obtained in the production of isophorone to recover isophorone and acetone

Tue, 19 May 2015 08:00:00 EDT

A process for preparing isophorone (3,5,5-trimethyl-2-cyclohexen-1-one) is provided wherein distillation vapors from the work-up of product fractions are recycled to earlier stages of operation of the process.



Method for preparing 3-trifluoromethyl chalcones

Tue, 19 May 2015 08:00:00 EDT

Disclosed is a method for preparing a compound of Formula 1 wherein Q and Z are as defined in the disclosure comprising distilling water from a mixture comprising a compound of Formula 2, a compound of Formula 3, a base comprising at least one compound selected from the group consisting of alkaline earth metal hydroxides of Formula 4 wherein M is Ca, Sr or Ba, alkali metal carbonates of Formula 4a wherein M1 is Li, Na or K, 1,5-diazabicyclo[4.3.0]non-5-ene and 1,8-diazabicyclo[5.4.0]undec-7-ene, and an aprotic solvent capable of forming a low-boiling azeotrope with water. Also disclosed is a method for preparing a compound of Formula 2 comprising (1) forming a reaction mixture comprising a Grignard reagent derived from contacting a compound of Formula 5 wherein X is Cl, Br or I with magnesium metal or an alkylmagnesium halide in the presence of an ethereal solvent, and then (2) contacting the reaction mixture with a compound of Formula 6 wherein Y is OR11 or NR12R13, and R11, R12 and R13 are as defined in the disclosure. Further disclosed is a method for preparing a compound of Formula 7 wherein Q and Z are as defined in the disclosure, using a compound of Formula 1 characterized by preparing the compound of Formula 1 by the method disclosed above or using a compound of Formula 1 prepared by the method disclosed above.



Method for producing phenylphosphonic acid metal salt composition, and crystal nucleating agent therefrom

Tue, 19 May 2015 08:00:00 EDT

A method for producing a phenylphosphonic acid metal salt composition, including reacting a phenylphosphonic acid compound (a) with a metal salt, metal oxide or metal hydroxide (b) that is present in an amount beyond the equivalent, the phenylphosphonic acid metal salt composition containing phenylphosphonic acid metal salt, and a surplus amount of the metal salt, the metal oxide or the surplus metal hydroxide (b). A crystal nucleating agent comprises the phenylphosphonic acid metal salt composition produced by the method.



Conjugated polymer composition for solar cell and flexible electronics applications

Tue, 19 May 2015 08:00:00 EDT

A polymer composition for solar cell and flexible electronics devices, where the polymer is a p-type conducting polymer. The p-type polymer comprises a benzothiadiazole acceptor and indeno-fluorene donor. Further, a solar cell and flexible electronic device article may be made from the polymer.



Compound and method of producing the same, acid generator, resist composition and method of forming resist pattern

Tue, 19 May 2015 08:00:00 EDT

A resist composition including a base component (A) which exhibits changed solubility in an alkali developing solution under action of acid and an acid-generator component (B) which generates acid upon exposure, the acid-generator component (B) including an acid generator (B1) consisting of a compound represented by general formula (b1-1) shown below: wherein RX represents a hydrocarbon group which may have a substituent exclusive of a nitrogen atom; each of Q2 and Q3 independently represents a single bond or a divalent linkage group; Y1 represents an alkylene group or fluorinated alkyl group of 1 to 4 carbon atoms; and Z+ represents an organic cation exclusive of an ion represented by general formula (w-1).



Energy efficient method and apparatus for the extraction of lower alcohols from dilute aqueous solution

Tue, 12 May 2015 08:00:00 EDT

The present invention relates to the energy efficient and selective extraction of dilute concentrations of C2-C6 alcohols from an aqueous solution using liquid phase dimethyl ether.



Phasing reactor product from hydrogenating acetic acid into ethyl acetate feed to produce ethanol

Tue, 12 May 2015 08:00:00 EDT

Disclosed herein are processes for alcohol production by reducing ethyl acetate produced by hydrogenating acetic acid in the presence of a suitable catalyst. The product of the acetic acid hydrogenation is fed directly to a decanter to separate the hydrogenation product into an aqueous phase comprising water and ethanol and an organic phase comprising ethyl acetate. The organic phase is reduced with hydrogen in the presence of a catalyst to obtain a crude reaction mixture comprising the alcohol, in particular ethanol, which may be separated from the crude reaction mixture. Thus, ethanol may be produced from acetic acid through an ethyl acetate intermediate without an esterification step. This may reduce the recycle of ethanol in the hydrogenolysis process and improve ethanol productivity.



Alicyclic alcohol

Tue, 12 May 2015 08:00:00 EDT

Provided is an alicyclic alcohol compound which can be used as a raw material for a compound perfume, and which has excellent floral-green-like aromas which are crisp and fresh; also provided are a manufacturing method for the same, and a perfume composition which contains the alicyclic alcohol compound. An alicyclic alcohol compound having a specified structure represented by chemical formula (1) has excellent floral-green-like aromas which are crisp and fresh; and a method for manufacturing the alicyclic alcohol compound represented by chemical formula (1) by reacting, in the presence of hydrogen fluoride, 4-isopropyl-1-methylcyclohexene and carbon monoxide, isomerizing the resulting 4-isopropyl-1-methylcyclohexane carboxylic acid fluoride, thus making 2-methyl-2-(4-methylcyclohexyl)-propionyl fluoride, reacting with alcohol and acquiring a cyclohexane carbonyl compound, and then reducing the cyclohexane carbonyl compound.



Process for producing phenol

Tue, 12 May 2015 08:00:00 EDT

In a process for producing phenol, cyclohexylbenzene is contacted with oxygen in the presence of an oxidation catalyst comprising a cyclic imide under oxidation conditions effective to produce a product comprising cyclohexylbenzene hydroperoxide and unreacted cyclic imide catalyst. At least a portion of the product is contacted with a cleavage catalyst under conditions effective to convert at least a portion of the cyclohexylbenzene hydroperoxide into a second product comprising further unreacted cyclic imide catalyst, phenol, and cyclohexanone. A portion of the further unreacted cyclic imide catalyst may then be removed from the second product and optionally recycled back to the oxidation step.



Dehydrogenation of cyclohexanone to produce phenol

Tue, 12 May 2015 08:00:00 EDT

In a process for the dehydrogenation of cyclohexanone to produce phenol, a feed comprising cyclohexanone is contacted with a dehydrogenation catalyst under dehydrogenation conditions comprising a temperature of less than 400° C. and a pressure of less than 690 kPa, gauge, such 0.1 to 50 wt % of the cyclohexanone in said feed is converted to phenol and the dehydrogenation product contains less than 100 ppm by weight of alkylbenzenes.



Method for cultivation of Monarda fistulosa

Tue, 12 May 2015 08:00:00 EDT

A method for cultivating Monarda fistulosaincludes planting seeds at rates between about 2.5 and about 5 pounds per acre, preferably about 4 pounds per acre. Fuel costs are reduced because seeding, mowing the first season, and harvesting in seasons thereafter are all that is required. Reduction in herbicide use results from the heavy rate of planting, improved germination attributed to rolling, and the plant's natural herbicides which are more highly effective when seeded at the higher rate. The method includes seeding, mowing during a first growing season, and harvesting each season thereafter. This method results in oil without weed contamination and carvacrol levels are high.



Phenol purification process

Tue, 12 May 2015 08:00:00 EDT

The present invention provides an easy process for purifying phenol by separating carbonyl compounds through selective hydrogenation of the compounds to the corresponding alcohols then distillation. The phenol purification process of the present invention comprises bringing phenol into contact with a copper-based catalyst in the presence of hydrogen to convert carbonyl compounds contained in the phenol to the corresponding alcohol compounds, and separating the alcohol compounds and phenol by distillation.



Apparatus for coproducting ISO type reaction products and alcohols from olefins, and method for coproducting them using the apparatus

Tue, 12 May 2015 08:00:00 EDT

The present invention relates to an apparatus for coproducting iso-type reaction product and alcohol from olefin, and a method for coproducting using the apparatus, in which the hydroformylation reactor provides a sufficient reaction area due to the broad contact surface area between the olefin and the synthesis gases that are the raw materials by a distributor plate installed in the reactor, and the raw materials can be sufficiently mixed with the reaction mixture due to the circulation of the reaction mixture so that the efficiency of the production of the aldehyde is excellent; and also the hydrogenation reactor suppresses the side reaction so that the efficiency for producing aldehyde and alcohol are all increased, and also iso-type reaction product and alcohol can be efficiently co-produced.



Protected aldehydes for use as intermediates in chemical syntheses, and processes for their preparation

Tue, 12 May 2015 08:00:00 EDT

A para-methoxy protected benzaldehyde useful in preparation of treprostinil, and of formula: (Formula (1)) is prepared by subjecting to Claisen re-arrangement a substituted benzaldehyde of formula (1a): (Formula (Ia)) to form the m-hydroxy-substituted benzaldehyde of formula (1b): (Formula (Ib)) and then reacting compound (1b) with a p-methoxybenzyl (PMB) compound to form a PMB-substituted benzaldehyde of formula (1).



Method for producing 2-chloromethylbenzaldehyde, 2-chloromethylbenzaldehyde-containing composition, and method for storing same

Tue, 12 May 2015 08:00:00 EDT

A process for obtaining an industrially useful 2-chloromethylbenzaldehyde-containing liquid composition at a high yield is provided. More specifically, a process for producing 2-chloromethylbenzaldehyde comprising step (A) of mixing 1-dichloromethyl-2-chloromethylbenzene and sulfuric acid having a concentration of 84.5% by weight or more; and step (B) of mixing a mixture obtained in step (A) and water is provided.



Method for preparing menthone from isopulegol

Tue, 12 May 2015 08:00:00 EDT

The present invention relates to a method for preparing menthone, starting from isopulegol, using specific homogeneous catalysts.



Process for preparing carboxamidine compounds

Tue, 12 May 2015 08:00:00 EDT

The present invention relates to a process of making a compound of formula (I): Wherein, R1, R2, R4 and X are as defined herein.



Triterpenoid compounds and methods of use thereof

Tue, 12 May 2015 08:00:00 EDT

The present invention provides therapeutically active compounds and compositions as receptor antagonists and methods of use thereof. In one aspect, the compounds are useful in modulating pain, inflammation and acute phase reactions by inhibiting the PGE2 receptors including PGE2 EP1, EP2 and EP4 receptors.



Method of producing alcohols

Tue, 05 May 2015 08:00:00 EDT

A method of making alcohols involves forming of alcohol esters from liquid alkane halides and a solution of metallic salts of organic acids to produce gaseous alcohol esters for reaction with magnesium or metal hydroxides to form the alcohol and the metal salt of the organic acids. In an improvement method liquid phase alcohol esters instead of gaseous alcohol esters are produced from liquid alkane halides and a solution of metal salts of organic acids whose alkane esters are less soluble in water than that of the alkane halide and treating of the alcohol ester formed with magnesium or metal hydroxides to form the alcohol and the metal salt of the organic acids.



Catalysts and processes for producing butanol

Tue, 05 May 2015 08:00:00 EDT

A catalyst composition for converting ethanol to higher alcohols, such as butanol, is disclosed. The catalyst composition comprises at least one alkali metal, at least a second metal and a support. The second metal is selected from the group consisting of palladium, platinum, copper, nickel, and cobalt. The support is selected from the group consisting of Al2O3, ZrO2, MgO, TiO2, zeolite, ZnO, and a mixture thereof.



Esterification process using extractive separation to produce feed for hydrogenolysis

Tue, 05 May 2015 08:00:00 EDT

Disclosed herein are processes for alcohol production by reducing an esterification product, such as ethyl acetate. The processes comprise esterifying acetic acid and an alcohol such as ethanol to produce an esterification product. The esterification product may be recovered using an extractive separation. The esterification product is reduced with hydrogen in the presence of a catalyst to obtain a crude reaction mixture comprising the alcohol, in particular ethanol, which may be separated from the crude reaction mixture.



Hydrogenation catalysts comprising a mixed oxide comprising nickel

Tue, 05 May 2015 08:00:00 EDT

A process is disclosed for producing ethanol comprising contacting acetic acid and hydrogen in a reactor in the presence of a catalyst comprising a binder and a mixed oxide comprising nickel and tin.



Process for making ethanol from acetic acid using acidic catalysts

Tue, 05 May 2015 08:00:00 EDT

A process for selective formation of ethanol from acetic acid by hydrogenating acetic acid in the presence of a catalyst comprises a first metal on an acidic support. The acidic support may comprise an acidic support material or may comprise an support having an acidic support modifier. The catalyst may be used alone to produced ethanol via hydrogenation or in combination with another catalyst. In addition, the crude ethanol product is separated to obtain ethanol.



Hydrogenation catalysts with acidic sites

Tue, 05 May 2015 08:00:00 EDT

The present invention relates to catalysts and to chemical processes employing such catalysts. The catalysts are preferably used for converting acetic acid to ethanol. The catalyst comprises acidic sites and two or more metals. The catalyst has acidic sites on the surface and the balance favors Lewis acid sites.



Process to reduce ethanol recycled to hydrogenation reactor

Tue, 05 May 2015 08:00:00 EDT

The present invention is directed to processes for recovering ethanol obtained from the hydrogenation of acetic acid. Acetic acid is hydrogenated in the presence of a catalyst in a hydrogenation reactor to form a crude ethanol product. The crude ethanol product is separated in one or more columns to recover ethanol. In some embodiments, less than 10 wt. % ethanol is recycled to the hydrogenation reactor.



Reduced energy alcohol separation process having controlled pressure

Tue, 05 May 2015 08:00:00 EDT

The present invention is directed to processes for the recovery of ethanol from a crude ethanol product obtained from the hydrogenation of acetic acid using a low energy process. The crude ethanol product is separated in one or more columns. At least one of the columns is operated at a controlled pressure to enhance separation of ethanol and organics. In one embodiment, there are at least two columns that operate at controlled pressures.



Process for the production of ethanol from an acetic acid feed and a recycled ethyl acetate feed

Tue, 05 May 2015 08:00:00 EDT

The present invention produces ethanol in a reactor that comprises a catalyst composition and a feed stream comprising acetic acid and a recycled liquid stream comprising ethyl acetate. The catalyst composition comprises a first catalyst comprising platinum, cobalt, and/or tin and a second catalyst comprising copper. The crude ethanol product may be separated and ethanol recovered.



Using a dilute acid stream as an extractive agent

Tue, 05 May 2015 08:00:00 EDT

Recovery of ethanol from a crude ethanol product obtained from the hydrogenation of acetic acid using an extractive distillation column. A diluted acid stream, comprising less than 30 wt. % acetic acid, is used as the extractive agent and is fed at a point above the crude feed stream. The column yields a residue that comprises ethanol, acetic acid, and water. The diluted acid stream may be separated from the residue and returned to the extractive distillation column.



Purification of crude glycerol

Tue, 05 May 2015 08:00:00 EDT

Crude glycerol obtained from raw materials, such as the glycerol obtained during the production of biodiesel or glycerol obtained during the conversion of fats or oils, is purified by forming a dioxolane therefrom by reacting the crude glycerol with a ketone or aldehyde, separating the dioxolane thus formed, converting the dioxolane into purified glycerol and ketone/aldehyde, and recovering the glycerol thus purified.



Process for isolating crystallized 2,2,4,4 tetramethyl-1,3-cyclobutanediol (TMCD) particles utilizing pressure filtration

Tue, 05 May 2015 08:00:00 EDT

A method for isolating 2,2,4,4-tetramethyl-1,3-cyclobutanediol (TMCD) solids from an isolated feed slurry formed in a TMCD process comprising TMCD, a liquid phase, and impurities by (a) treating the isolated feed slurry in a product isolation zone to produce an isolated TMCD product wet cake, a mother liquor, and impurities; wherein the product isolation zone can comprise at least one rotary pressure drum filter.



Separation of isomeric menthol compounds

Tue, 05 May 2015 08:00:00 EDT

The invention relates to a process for rectificative separation of compositions of matter containing diastereomers of 2-isopropyl-5-methylcyclohexanol by using ionic liquids as extractants.