Subscribe: Untitled
http://www.freepatentsonline.com/rssfeed/rsspat320.xml
Added By: Feedage Forager Feedage Grade B rated
Language: English
Tags:
battery pack  battery  cell  charging  circuit  control  device  discharge  includes  pack  power  system  unit  voltage 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: Untitled

Untitled





 



Charging device, image forming apparatus, and computer program product

Tue, 11 Aug 2015 08:00:00 EDT

An charging device includes: capacitors connected in series; a charging unit that charges the capacitors; bypass units, each respectively connects in parallel to each capacitors, wherein each bypass unit causes, when a charged voltage of any capacitor has reached a set voltage, a charging current to bypass the capacitor whose charged voltage has reached the set voltage; and a control unit that controls the charging unit to charge the capacitors in such a manner that, when a charging voltage of the any capacitor has reached the set voltage, the control unit causes the charging unit to reduce the charging current, and if a predetermined period has elapsed since the charging voltage has reached the set voltage, and if a charging voltage of any of the other capacitors has not reached the set voltage after the predetermined period, the control unit causes the charging unit to increase the charging current.



Available charging/discharging current calculation method and power supply device

Tue, 30 Jun 2015 08:00:00 EDT

A method includes steps of dividing resistance R into a physical and chemical resistances Ro and Rp, obtaining corrected open-circuit voltages Vo corresponding to setting currents Ia to Ix, acquiring predicted reaching voltages Va to Vx corresponding to the setting currents Ia to Ix, and creating a current-voltage curve. The corrected open-circuit voltages Vo are obtained to predict available maximum currents I—target in a particular time t2. The predicted reaching voltages Va to Vx are acquired based on corrected physical and chemical resistances Ro and Rp, and the corrected open-circuit voltages Vo. The current-voltage curve is creased based on the setting currents Ia to Ix and the predicted reaching voltages Va to Vx to acquire upper and lower limit voltages Vmax and Vmin, and upper and lower limit currents Imax and Imin at a temperature whereby assigning these limit currents to available maximum currents I—target in charging and discharging operations, respectively.



Battery voltage detector having pull-up resistor

Tue, 02 Jun 2015 08:00:00 EDT

A battery voltage detector includes, but is not limited to: a voltage detection circuit; and a voltage processor. The voltage detection circuit includes, but is not limited to: a capacitor configured to be charged by a battery cell; a pair of output terminals; an output switch; and a voltage processor. While the capacitor is charged, the output switch is configured to be off-state and insulate the capacitor from the pair of the output terminals. After the capacitor is charged, the output switch is configured to be on-state and connect the capacitor to the pair of the output terminals. The voltage processor is configured to obtain, as a cell voltage, a voltage between the output terminals of the voltage detection circuit while the output switch is on-state. A high-potential output terminal of the pair of the output terminals is connected to a power line via a pull-up resistor.



Battery module, electric vehicle, authentication apparatus, and discharging control method for battery module

Tue, 26 May 2015 08:00:00 EDT

There is provided a battery module including: a power storage unit storing power; a first authentication unit carrying out first authentication via a first authentication route; a second authentication unit carrying out second authentication via a second authentication route; and a discharging control unit controlling discharging from the power storage unit to an external appliance, wherein the first authentication unit is operable, when the first authentication has succeeded, to share key information to be used in the second authentication with an authentication party for the second authentication, the second authentication unit carries out the second authentication using the key information shared with the authentication party, and the discharging control unit is operable, when the second authentication has succeeded, to permit discharging from the power storage unit.



Aggregation server for grid-integrated vehicles

Tue, 26 May 2015 08:00:00 EDT

Methods, systems, and apparatus for aggregating electric power flow between an electric grid and electric vehicles are disclosed. An apparatus for aggregating power flow may include a memory and a processor coupled to the memory to receive electric vehicle equipment (EVE) attributes from a plurality of EVEs, aggregate EVE attributes, predict total available capacity based on the EVE attributes, and dispatch at least a portion of the total available capacity to the grid. Power flow may be aggregated by receiving EVE operational parameters from each EVE, aggregating the received EVE operational parameters, predicting total available capacity based on the aggregated EVE operational parameters, and dispatching at least a portion of the total available capacity to the grid.



Discharge device and discharge method for the active discharge of a capacitor for use in the electric-power system of an electric-drive vehicle

Tue, 26 May 2015 08:00:00 EDT

A discharge device actively discharges a main capacitor in an electric-power system of an electric-drive vehicle and comprises a discharge branch of a circuit connected in parallel to the capacitor and including a discharge transistor biased to “conduction” mode when the capacitor must be discharged. A control device is connected to a “gate/base” terminal of and controls the transistor, biasing the transistor to the mode when the capacitor is required to fee discharged. A control transistor maintains the discharge transistor in a “non-conductive” state when the control transistor is in the mode. The control transistor is in the state for the discharge transistor to be in the mode. A safety capacitor is interposed between the terminal and a power supply and charges when the discharge transistor is in the mode, causing a progressive decrease of current at the terminal, until the discharge transistor is biased to the state.



Wireless self-sufficient monitoring system for a door lock mechanism

Tue, 26 May 2015 08:00:00 EDT

The invention relates to a monitoring system for monitoring a state of a door lock mechanism of a door or of a closure of a storage space of a means of transportation, comprising a generator and a sensor/actuator. The generator produces electrical energy from vibration energy, and the sensor detects the state of the door lock mechanism. The sensor uses the kinetic energy that is produced by the actuation of the door lock to generate an electrical signal, which is then transmitted to a microcontroller.



Battery pack with integral non-contact discharging means and electronic device including the same

Tue, 26 May 2015 08:00:00 EDT

A battery pack and an electronic device are disclosed. The battery pack includes a battery for storing electric energy, and a non-contacting discharging unit for receiving the stored electric energy from the battery and for transferring the stored electric energy to a power receiving unit in a non-electrically contacting manner. The electronic device includes a main body and the battery pack. The main body includes a power receiving unit. The battery pack is for mounting to and supplying power to the main body.



Semiconductor device for battery control and battery pack

Tue, 26 May 2015 08:00:00 EDT

A semiconductor device for battery control includes a CPU, a first bus coupled to the CPU, a second bus not coupled to the CPU, and a protective function circuit for protecting a battery from stress applied thereto. The semiconductor device also includes a non-volatile memory storing trimming data, a trimming circuit to perform trimming required to allow the protective function circuit to exert a protective function, and a bus control circuit capable of selectively coupling the first bus and the second bus to the non-volatile memory. The semiconductor device further includes a transfer logic circuit which causes, by making the bus control circuit select the second bus, a trimming data transfer path leading from the non-volatile memory to the trimming circuit to be formed and the trimming data stored in the non-volatile memory to be transferred to the trimming circuit without involving the CPU.



Apparatus for minimizing self-discharge of a smart battery pack

Tue, 26 May 2015 08:00:00 EDT

An apparatus for minimizing self-discharge of a smart battery pack is provided. During initial storage of the smart battery pack (100), prior to be being charged, a self-discharge protection circuit (110) disables smart battery circuitry (130). A minimal current drain is maintained while the smart battery circuitry (130) is disabled. Upon coupling of the smart battery pack (100) to a charger, the protections circuit (110) enables the smart battery circuitry (130). Battery packs having to be shipped with partially drained cells as part of shipping precaution requirements are no longer faced with the additional drainage problem previously caused by the smart battery circuitry (130) during storage.



Battery charge management using a scheduling application

Tue, 26 May 2015 08:00:00 EDT

According to some embodiments, battery charge management using a scheduling application is disclosed. A first parameter may be received from a scheduling application running on a mobile computing device having a battery pack. Based on at least the first parameter and battery pack data, a required charge percentage for the battery pack may be determined and the remaining capacity of the battery pack may be determined. If the remaining capacity of the battery pack is less than the required charge percentage, a charge termination voltage may be determined and the battery pack may be charged to the charge termination voltage.



Battery controller, battery control method and program

Tue, 26 May 2015 08:00:00 EDT

There is provided a battery controller including a storing unit which stores an upper limit voltage and a lower limit voltage, each defining a first voltage range in which a battery is charged/discharged, and a second upper limit voltage and a second lower limit voltage, each defining a second voltage range which is wider than the first voltage range, and a charge/discharge regulation unit which temporarily changes, when charge/discharge is performed in the first voltage range and permission for charge/discharge in the second voltage is received, setting of the battery such that charge/discharge is performed in the second voltage range.



Energy storage system and method of controlling the same

Tue, 26 May 2015 08:00:00 EDT

An energy storage system and a method of controlling the same is provided. The energy storage system may directly provide generated DC power or DC power stored in a battery to a DC load without performing a DC/AC conversion or an AC/DC conversion. Furthermore, in the case where a grid operates abnormally (e.g. power interruption) and the energy storage system functions as an uninterruptible power supply (UPS), power stored in a battery may be selectively provided to loads according to power remaining in a battery, and thus stored power may be used stably.



Battery fuel gauge apparatus

Tue, 26 May 2015 08:00:00 EDT

A battery fuel gauge apparatus comprises a current amplifier formed by a first transistor and a second transistor. Both transistors operate in the same operation conditions except that the second transistor has a smaller channel width in comparison with that of the first transistor. The first transistor is connected in series with a battery pack. The second transistor is connected in series with a sensing device. The sensing device comprises a first resistor and a second resistor connected in series. The first resistor has a positive temperature coefficient and the second resistor has a negative temperature coefficient.



Belt battery charger

Tue, 26 May 2015 08:00:00 EDT

A belt battery charger includes a belt having a first end, a second end and an elongated central portion extending between the first and second ends. A plurality of electrically connected rechargeable batteries are carried by the central portion of the belt. A belt buckle located at the first end of the belt includes a frame that is secured to the central portion of the belt. The buckle further includes a prong in the form of an electrical connector electrically connected to the batteries and pivotally secured to the frame. The second end of the belt includes a number of spaced apart eyelets passing therethrough. The prong is shaped so as to be able to enter one of the eyelets to secure the second end of the belt to the buckle in the conventional manner. A second electrical connector is located adjacent the second end of the belt and is also connected to the batteries. One of said connectors is adapted to be connected to a cell phone for charging the same.



Electronic cassette charger

Tue, 26 May 2015 08:00:00 EDT

A charger includes a loading chamber into which a battery pack is insertably/removably loaded. An insertion opening into which the battery pack is inserted is formed on an upper surface of the main body. The loading chamber is forwardly inclined to a front surface of the main body, and a bottom surface of the insertion opening is inclined with respect to a horizontal direction so that one end of the front surface side is located at a lower end and the other end of the back surface side is located at an upper end. A connector for supplying power is disposed at the upper end side of the bottom surface. Even when the dust, rubbish or fluid entered from the insertion opening drops to the bottom surface, it flows down to the lower end side, so that less dirt adheres to the connector.



Battery pack having improved strength

Tue, 26 May 2015 08:00:00 EDT

Disclosed herein is a battery pack including a battery cell array including two or more battery cells, each of which has an electrode assembly of a cathode/separator/anode structure disposed in a battery case together with an electrolyte in a sealed state, arranged in a lateral direction, a protection circuit module (PCM) connected to an upper end of the battery cell array to control an operation of the battery pack, a pack case in which the battery cell array and the protection circuit module are disposed, and a plate-shaped reinforcing member mounted between the pack case and the battery cell array to increase mechanical strength of the pack case.



System and method for managing load distribution across a power grid

Tue, 26 May 2015 08:00:00 EDT

A method for scheduling a charge of a plug-in electric vehicle (PEV) includes receiving, by a load management system, PEV information from a PEV plugged into an electric vehicle supply equipment (EVSE); transformer information from a transformer management system, the transformer information relating to a transformer associated with the EVSE; determining, by the charging information based on the PEV information and transformer information; providing the charging information to the PEV.



Electric power supply system and electric power supply method

Tue, 26 May 2015 08:00:00 EDT

An electric power supply system includes a connecting device that connects a secondary battery provided in a vehicle to a building, and a control apparatus that i) identifies the type of the vehicle that is connected to the connecting device, the type of the secondary battery, or the type of electric power that is distinguishable by the charging source of the electric power stored in the secondary battery, ii) determines a preset electric power supply method based on the identification results, and iii) controls a supply of electric power from the secondary battery to the building based on the determined electric power supply method.



Multi-orientation stand for a portable electronic device

Tue, 26 May 2015 08:00:00 EDT

A stand for a portable electronic device includes a device receiving side including a coupling component for engaging with the portable electronic device when the portable electronic device is in a first orientation relative to the device receiving side and when the portable electronic device is in a second orientation relative to the device receiving side. The stand also includes a first support side adjacent to the device receiving side to act as a base when the portable electronic device is in the first orientation, and a second support side adjacent to the first support side to act as a base when the portable electronic device is in the second orientation.



Charging apparatus and method for controlling charging apparatus

Tue, 26 May 2015 08:00:00 EDT

A charging apparatus including a charging unit adapted to charge, in a non-contact manner, an apparatus to be charged placed in a charging region, a detector adapted to detect a charged state of the apparatus to be charged placed in the charging region, and a controller adapted to change a mode of the apparatus to be charged to a mode that inhibits vibration, according to the charged state detected by the detector.



Battery system and energy storage system including same

Tue, 26 May 2015 08:00:00 EDT

A battery system is disclosed. The battery system includes a plurality of battery cells, and a battery cell balancing unit, configured to adjust voltages across each of the battery cells to reduce variation among the voltages across the battery cells. The battery cell balancing unit includes a controller configured to receive a DC reference current and to generate an AC current based on the DC reference current, a transformer, a rectifier circuit including a rectifier connected to the output coil, and a switching unit including a plurality of switches, each configured to selectively connect the rectifier to one of the battery cells.



Standby battery box for electric cylinder

Tue, 26 May 2015 08:00:00 EDT

A standby battery box for an electric cylinder is electrically connected to a control box for driving the electric cylinder and includes a charge-discharge device and a rechargeable battery. The charge-discharge device includes a protection unit, a power conversion unit, a voltage detection unit, a control unit, a discharge unit, a display unit, and a switch unit. The rechargeable battery is electrically connected to the charge-discharge device. When a startup switch of the switch unit is pressed, the charge-discharge device delivers the electricity of the rechargeable battery into the control box. When a shutoff switch of the switch unit is pressed, the charge-discharge device does not supply power, thereby protecting the standby battery box from being exhausted.



System and method for protecting a power consuming circuit

Tue, 26 May 2015 08:00:00 EDT

A system for protecting a power consuming circuit, the system comprising two terminals for receiving power and two terminals for providing received power. Between one of the receiving terminals and a providing terminal, a transistor is provided which is controlled by a Zener diode and to break the connection between one of the receiving terminals and a providing terminal, if a voltage over the providing terminals or the receiving terminals exceeds the breakdown voltage of the Zener diode.



Battery charging apparatus

Tue, 26 May 2015 08:00:00 EDT

An apparatus for charging an automobile battery is presented. The device provides a surface charge with a time limited window in which to start a vehicle. Use of used batteries provides for environmentally effective manner in which to deal with the tremendous amount of used batteries that are discarded worldwide each year. The apparatus may optionally include a charging circuit to allow for recharging the used batteries. An LED display may be included to provide indication when a target battery has sufficient surface charge to warrant an attempt to start an engine. The apparatus is a small portable device that can be stored anywhere in a vehicle.



More readily available traction battery

Tue, 26 May 2015 08:00:00 EDT

A battery includes a first terminal, a second terminal, a first battery module, a second battery module, and a third batter module. The first battery module and the second battery module includes a first pole, a second pole, a plurality of battery cells, a charge and disconnect device, a disconnect device, and a bridging device. The third battery module includes a first pole, a second pole, a plurality of battery cells, a first disconnect device, a second disconnect device, and a bridging device. The first and second poles of the first battery module are connected in series with the first terminal and the first pole of the third battery module. The first and second poles of the second battery module are connected in series with the second terminal and the second pole of the third batter module.



Systems and methods for in-vehicle charging of pallet jack batteries

Tue, 26 May 2015 08:00:00 EDT

Systems and methods for in-vehicle charging of pallet jack batteries are provided. An example system allows using a power source of a host vehicle configured to provide power at voltage levels lower than the operating voltage of the pallet jack battery stack. The system may allow, for example, charging a 24 volts pallet jack battery stack from a 12 volts power source of the host vehicle. The system may further comprise an interconnecting circuit having a plurality of contactors electrically coupling the batteries in parallel for charging and serially for discharging. The system may further comprise a voltage monitoring circuit to detect whether the pallet jack is connected to the host vehicle power source for charging. Based on the detection, the voltage monitoring circuit may reconfigure the interconnecting circuit to electrically couple the pallet jack batteries in parallel.



Battery power delivery module

Tue, 26 May 2015 08:00:00 EDT

A system and method for digital management and control of power conversion from battery cells. The system utilizes a power management and conversion module that uses a CPU to maintain a high power conversion efficiency over a wide range of loads and to manage charge and discharge operation of the battery cells. The power management and conversion module includes the CPU, a current sense unit, a charge/discharge unit, a DC-to-DC conversion unit, a battery protection unit, a fuel gauge and an internal DC regulation unit. Through intelligent power conversion and charge/discharge operations, a given battery type is given the ability to emulate other battery types by conversion of the output voltage of the battery and adaptation of the charging scheme to suit the battery.



Portable solar power supply

Tue, 26 May 2015 08:00:00 EDT

A portable solar power supply includes a solar-powered charger including a solar cell; a circuit board including a power management unit, a buck-boost converter unit, a charging control unit, a data management unit, an on/off switch, a set of indicators, a power inlet, a power outlet, a first connector, a wireless communications member, a line transmission member, a data storage member, an RFID member, an SD card member, a USB port, a Micro USB port, and a solar charging member; and holes; and a rechargeable battery including at least one electrochemical cell each shaped to partially contain the solar-powered charger and including a second connector, a third connector, snapping members, and slots. The second connector is capable of connecting to the first connector or the third connector, and the snapping members are capable of being retained in the holes or the slots.



Electric power tool

Tue, 26 May 2015 08:00:00 EDT

An electric power tool is included in a plurality of types of electric power tools. The plurality of types of electric power tools comprise a plurality of types of battery packs having different rated output voltages and a plurality of types of tool bodies, the housings of which are equipped with an attached part on which each of the battery packs is mounted in a freely removable manner. The attached part possessed by the plurality of types of tool bodies equipped with motors having different voltage characteristics is formed so as to be able to mount an arbitrary one of the plurality of types of battery packs having different rated output voltages. This makes it possible to widen the range of available battery packs and enhance convenience.



Direct feeding apparatus for impedance matching of wireless power transmission device, and transmitter and receiver using the same

Tue, 26 May 2015 08:00:00 EDT

A direct feeding apparatus for impedance matching of a wireless power transmission device includes a helical type resonator, and a feeding unit configured to directly feed power to a region having a relatively small current value as compared to a center of a conductive line of the resonator.



Rechargeable flameless candle systems and methods

Tue, 26 May 2015 08:00:00 EDT

According to an embodiment of the present invention, a recharging device includes a recharging port that receives a flameless candle and recharges a battery in the candle. The recharging device includes a first stacking structure that has a top portion and a bottom portion. There is a top stacking contact on the top portion. An electrical power bus is connected with the top stacking contact. The electrical power bus is also configured to provide electrical power to the flameless candle through the recharging port. The top portion of the first stacking structure is configured to mate with a bottom portion of a first stacking structure of another recharging device.



Method to facilitate opportunity charging of an electric vehicle

Tue, 19 May 2015 08:00:00 EDT

A method for electrically charging a high-voltage battery of a subject vehicle includes resolving a geographic location of the subject vehicle at a remote charging site, electrically charging the high-voltage battery through a connection of the subject vehicle to an electric power outlet at the remote charging site, monitoring cumulative electric power flow to the high-voltage battery of the subject vehicle, communicating the cumulative electric power flow to a central server, and reconciling billing for the cumulative electric power flow between an owner of the subject vehicle and an owner of the remote charging site.



Systems and methods for determining cell capacity values in a multi-cell battery

Tue, 19 May 2015 08:00:00 EDT

Systems and methods to determine cell capacities of a vehicle battery pack. Cell capacities may be determined using state of charge (SOC) estimates for the cells and a charge count for the battery pack. The SOC estimates may be determined when the SOC of the battery pack is below a lower threshold and above an upper threshold. Error values may also be generated for the cell capacity values.



Systems and methods for detecting ultracapacitor cell short circuits

Tue, 19 May 2015 08:00:00 EDT

A system for detecting a short-circuited ultracapacitor cell in a machine is disclosed. The system may have a memory that stores instructions and one or more processors capable of executing the instructions. The one or more processors may be configured to perform cell balancing among ultracapacitor cells arranged within two or more ultracapacitor modules, each ultracapacitor module including at least two ultracapacitor cells connected in series. The one or more processors may be further configured to measure a module voltage generated by each of the plurality of ultracapacitor modules after performing the cell balancing and before applying a load of the machine to the ultracapacitor modules, and determine whether an ultracapacitor cell among the plurality of ultracapacitor cells is short-circuited based on a comparison of the measured module voltages.



Method for operating an automated guided, mobile assembly and/or material transport unit and automated guided, mobile assembly and/or material transport unit therefor

Tue, 19 May 2015 08:00:00 EDT

A method for operating a driverless, mobile assembly and/or material transport unit as a driverless transport system (DTS) with fixed assembly and/or warehousing stations. In this method, a system control device is used for the entire assembly process. The driverless, mobile assembly and/or material transport units comprises a travel device for the traveling movement of the unit, a drive device for the travel device, an energy storage device for providing the energy for the drive device and a control device for controlling the traveling movement in coordination with the system control device.



Monitor and control circuitry for charging a battery/cell, and methods of operating same

Tue, 19 May 2015 08:00:00 EDT

Circuitry and techniques to measure, at the battery's terminals, characteristic(s) of the charging signal applied to the battery/cell during the recharging operation and, in response to feedback data which indicates the charging signal is out-of-specification, control or instruct the charging circuitry to adjust characteristic(s) of the recharging signal (e.g., the amplitude of the voltage of and/or current applied to or removed from the battery during the charging operation). For example, a rechargeable battery pack comprising a battery, and controllable switch(es), a current meter and voltmeter, all of which are fixed to the battery. Control circuitry generates control signal(s) to adjust a current and/or voltage of the charging signal using the feedback data from the current meter and/or voltmeter, respectively.



Charging device with battery management system for rechargeable battery

Tue, 19 May 2015 08:00:00 EDT

A charging device with a battery management system which remains a rechargeable battery in full capacity during standby after being fully charged is disclosed. The charging device includes a charging module, electrically connected to a power source, for charging the rechargeable battery; a voltage detecting module, for detecting a voltage of the rechargeable battery; and a determination module, for instructing the charging module to charge the rechargeable battery with a supplementary current, when the voltage of the rechargeable battery detected by the voltage detecting module reduces to a first predetermined voltage, until the voltage of the rechargeable battery reaches a second predetermined voltage. A reduction of the voltage of the rechargeable battery is due to self-discharge of the rechargeable battery during standby after being fully charged.



Method and circuitry to calculate the state of charge of a battery/cell

Tue, 19 May 2015 08:00:00 EDT

The present inventions, in one aspect, are directed to techniques and/or circuitry to adapt the charging of a battery using data which is representative of an overpotential or relaxation time (full or partial) of the battery. In another aspect the present inventions are directed to techniques and/or circuitry to calculate data which is representative of an overpotential or relaxation time (full or partial) of the battery. In yet another aspect the present inventions are directed to techniques and/or circuitry to calculate data which is representative of a state of charge of the battery using an overpotential or relaxation time (full or partial) of the battery.



Battery protecting circuit, battery protecting device, and battery pack

Tue, 19 May 2015 08:00:00 EDT

A disclosed battery protecting circuit includes a battery protecting IC powered by a voltage of a secondary battery; another battery protecting IC powered by a voltage of another secondary battery connected to the secondary battery in series; and a constant voltage output unit which receives a maximum voltage obtained by adding voltages of the secondary battery and the other secondary battery in series and outputs a constant voltage upon receipt of a control signal from an output terminal of the battery protecting IC or the other battery protecting IC.



Battery cell temperature detection

Tue, 19 May 2015 08:00:00 EDT

Temperature characteristics of battery cells are detected. In accordance with one or more embodiments, an intercept frequency is detected for each battery cell, at which frequency an imaginary part of a plot of impedance values of the battery cell exhibits a zero crossing. The impedance values correspond to current injected into the cell. A temperature of the cell is determined based upon the detected intercept frequency for the cell and stored data that models operation of the cell. Various approaches are implemented with different types of circuits coupled to detect the impedance values of the respective cells.



Battery pack and method of controlling the same

Tue, 19 May 2015 08:00:00 EDT

A battery pack, and a method of controlling the battery pack are disclosed. The battery pack detects consumption current when a load is not turned on, and shuts off power when a load is turned off or in stand-by mode, thereby preventing consumption current of the load from flowing.



Control system for a flow cell battery

Tue, 19 May 2015 08:00:00 EDT

A controller for controlling a flow cell battery system is provided. The controller operates the flow cell battery system in a plurality of states including a plating state, a charging state and a discharge state.



State based full and empty control for rechargeable batteries

Tue, 19 May 2015 08:00:00 EDT

State based full and empty control for rechargeable batteries that will assure a uniform battery empty condition, even in the presence of a load on the battery. A fuel gauge provides a prediction of the open circuit voltage of the battery, and when the predicted open circuit voltage of the battery reaches the predetermined open circuit voltage of an empty battery, the load is terminated, after which the battery will relax back to the predetermined open circuit voltage of an empty battery. A similar technique is disclosed for battery charging, allowing faster battery charging without overcharging. Preferably an RC battery model is used as the fuel gauge to provide the prediction, but as an alternative, a coulomb counter may be used to provide the prediction, with error correction between successive charge discharge cycles.



Energy management system

Tue, 19 May 2015 08:00:00 EDT

An energy management system has an integration control portion that performs control to charge a storage battery with a power of such an amount that a power consumption including a power supplied by a supply portion is equal to or smaller than a target value indicated by power consumption target information recorded in a recording portion when a power consumption detected by a detection portion is smaller than the target value, and to supply a building with a power with which the storage battery is charged such that the power consumption including the power supplied by the supply portion coincides in amount with a power equal to or smaller than the target value indicated by the power consumption target information recorded in the recording portion when the power consumption detected by the detection portion is larger than the target value.



Assembled battery charging method, charging control circuit, and power supply system

Tue, 19 May 2015 08:00:00 EDT

A method for charging an assembled battery including series circuits connected in parallel, each of the series circuits including series-connected lead storage batteries, using a single charger is provided. The method includes: a first step of obtaining a first index value, corresponding to a resistance value of a first series circuit with a correlative relationship, the first series circuit having a lowest resistance value; a second step of obtaining a second index value corresponding to a resistance value of a second series circuit with a correlative relationship, the second series circuit having a highest resistance value; a third step of performing normal charging, in which the assembled battery is charged with a first amount of charge corresponding to the first index value; and a fourth step of performing refresh charging, in which the assembled battery is charged with a second amount of charge corresponding to the second index value.



Parallel circuit of accumulator lines

Tue, 19 May 2015 08:00:00 EDT

A circuit for connecting a first accumulator line to a second accumulator line from an accumulator is described. The accumulator is provided for charging and discharging electrical energy via the accumulator lines. Each accumulator line has a positive pole and a negative pole for charging and discharging electrical energy. The circuit has at least one first switch which is provided for disconnecting and connecting two similar poles of the two accumulator lines.



Method for transferring energy between at least two energy storage cells in a controllable energy store

Tue, 19 May 2015 08:00:00 EDT

In a method for transferring energy between at least two energy storage cells in a controllable energy store that serves to control and to supply electrical energy to an n-phase electric machine, which energy store has n power supply arms which each have at least two series-connected energy storage modules which each include at least one electrical energy storage cell with an associated controllable coupling unit, and are connected to one respective phase of the electric machine, in a charging phase, all coupling units of those energy storage modules which are to be used as an energy source are controlled in such a way that the respectively associated energy storage cells are connected into the respective power supply arm.



Battery system for vehicle

Tue, 19 May 2015 08:00:00 EDT

A battery system for a vehicle is provided with discharge circuits (R1, 129A through 129D, 128A through 128D) that discharge battery cells (BC1 through BC4) via measurement lines of those battery cells (BC1 through BC4). A control circuit transmits to an integrated circuit (3A) a first discharge command that causes discharge of the odd numbered battery cells (BC1 and BC3) of a cell group (GB1), a first transmission command that causes transmission to the control circuit of the terminal voltages of only the odd numbered battery cells (BC1 and BC3) measured during execution of the first discharge command, a second discharge command that causes discharge of the even numbered battery cells (BC2 and BC4) of the cell group (GB1), and a second transmission command that causes transmission to the control circuit of the terminal voltages of only the even numbered battery cells (BC2 and BC4) measured during execution of the second discharge command; and, based on the these various terminal voltages transmitted from the integrated circuit (3A), the control circuit diagnoses abnormalities in the system that includes the battery cells, the measurement lines, and the discharge circuits.



System and method for controlling output of a battery pack

Tue, 19 May 2015 08:00:00 EDT

Systems and methods for controlling the output of a battery pack are disclosed. In one example, a battery pack contactor is opened in response to battery pack current. The system and method may reduce battery pack degradation and increase system flexibility.