Subscribe: Untitled
http://www.freepatentsonline.com/rssfeed/rsspat266.xml
Added By: Feedage Forager Feedage Grade B rated
Language: English
Tags:
cooling  device  furnace  gas  heating  material  metal  method  molten metal  molten  oxygen  shaft  surface  tuyere  wall 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: Untitled

Untitled





 



Cooling plate arrangement and method for installing cooling plates in a metallurgical furnace

Tue, 26 May 2015 08:00:00 EDT

The present invention proposes a gap-filler insert (20) for use with cooling plates (12, 12′) for a metallurgical furnace, the cooling plates (12, 12′) having a front face (14, 14′) directed towards the interior of the furnace, an opposite rear face (16, 16′) directed towards a furnace wall (10) of the furnace and four edge faces (18, 18′). In accordance with an aspect of the present invention, the gap-filler insert (20) comprises a metal front plate (24) with a front side (24) facing the interior of the furnace and anchoring means (28, 28′, 30, 30′, 32, 34) for mounting the front plate (24) between two neighboring cooling plates (12, 12′) in such a way that the front plate (24) extends between the edge faces (18, 18′) of both cooling plates (12, 12′), and that the front side (26) of the front plate (24) is flush with the front faces (14, 14′) of both cooling plates (12, 12′).



Metal melting apparatus

Tue, 26 May 2015 08:00:00 EDT

A refractory well (16) for melting scrap metal pieces into a molten metal bath, comprises an inlet (18) for introducing metal into said well, the inlet being located so as to cause a circular flow of molten metal in said well, an outlet (19) for the flow of metal from said well and an electromagnetic pump (22) located beneath the refractory well for pumping said molten metal from said well through said outlet.



Target material refinement device and target supply apparatus

Tue, 26 May 2015 08:00:00 EDT

A target material refinement device may include a refinement tank to accommodate a target material, a heating section to heat the interior of the refinement tank, and an oxygen-atom removing section to remove oxygen atoms present in the target material.



Cooling system for hot-rolled steel strip

Tue, 26 May 2015 08:00:00 EDT

Provided is a cooling system for a hot-rolled steel strip capable of increasing the cooling rate for rapidly cooling a rolled steel immediately after rolling and suitable for an apparatus for manufacturing a hot-rolled steel strip having a fine-grained structure. For this purpose, guides (16A, 16B) having guiding surfaces (16a, 16b) to guide a rolled steel (W) exiting work rolls (12A, 12B) in the conveyance direction are provided at exits of the work rolls in a final stand (Sn) of a finish rolling mill line in a manner that the guides can follow a change in the diameter of the work rolls, a number of injection holes (21A, 21B) are formed in the guides, and a number of rolled steel cooling nozzles (23A, 23B) are provided to spray a large amount of cooling water through the injection holes directly onto the rolled steel.



Gas-transfer foot

Tue, 19 May 2015 08:00:00 EDT

The present invention includes a molten metal pump and associated components that enable gas to be released into a stream of molten metal. The gas may be released into the molten metal stream (preferably into the bottom of the stream) flowing through a passage. Such a stream may be within the pump discharge and/or within a metal-transfer conduit extending from the pump discharge. The gas is released by using a gas-transfer foot that is positioned next to and is preferably attachable to the pump base or to the metal-transfer conduit. Preferably, the conduit (and/or discharge) in which the gas is released comprises two sections: a first section having a first cross-sectional area and a second section downstream of the first section and having a second cross-sectional area, wherein the second cross sectional area is larger than the first cross-sectional area. Preferably, the gas is released into or near the second section so that the gas is released into an area of relatively lower pressure.



Method of using a suspension smelting furnace, a suspension smelting furnace, and a concentrate burner

Tue, 19 May 2015 08:00:00 EDT

The invention relates to a method of using a suspension smelting furnace and to a suspension smelting furnace and to a concentrate burner (4). The concentrate burner (4) comprises a first gas supply device (12) for feeding a first gas (5) into the reaction shaft (2) and a second gas supply device (18) for feeding a second gas (16) into the reaction shaft (2). The first gas supply device (12) comprises a first annular discharge opening (14), which is arranged concentrically with the mouth (8) of a feeder pipe (7), so that the first annular discharge opening (14) surrounds the feeder pipe (7). The second gas supply device (18) comprises a second annular discharge opening (17), which is arranged concentrically with the mouth (8) of the feeder pipe (7), so that the second annular discharge opening (17) surrounds the feeder pipe (7) opening (14).



Bustle pipe arrangement

Tue, 12 May 2015 08:00:00 EDT

There is provided a bustle pipe arrangement of a shaft furnace, in particular for feeding hot gas into the shaft furnace such as e.g. a blast furnace, wherein the bustle pipe arrangement comprises a circumferential bustle pipe arranged along the outer casing of the shaft furnace, at a certain distance therefrom. The arrangement further comprises a plurality of first support arms connecting the bustle pipe to the outer casing of the shaft furnace on a first level; and a plurality of second support arms connecting the bustle pipe to the outer casing of the shaft furnace on a second level, the first level being separate from the second level. The first and second support arms are configured to support the circumferential bustle pipe. First blow channels are arranged through the first support arms for fluidly connecting the bustle pipe to the interior of the shaft furnace.



Steel wire tempering liquid wiping device

Tue, 12 May 2015 08:00:00 EDT

The present invention discloses a steel wire tempering liquid wiping device. The device comprises a shell. A thermal insulation layer is provided on an inner wall of the shell, and a steel wire inlet and a steel wire outlet are provided on the shell. A wiping fiber rack is installed in a wiping cavity, and a tempering liquid wiping fiber is installed on the wiping fiber rack and is high temperature resistant fibers. After tempering, the steel wires pass through the tempering liquid wiping fiber. At the bottom of the wiping fiber rack, a tempering liquid recovery device is arranged. A heating device is installed in the shell. The steel wires come out from a high temperature tempering furnace, and then enter the steel wire tempering liquid wiping device.



Transferring molten metal using non-gravity assist launder

Tue, 28 Apr 2015 08:00:00 EDT

A system and method for transferring molten metal from a vessel and into a launder is disclosed. The system includes at least a vessel for containing molten metal, an overflow (or dividing) wall, and a device or structure, such as a molten metal pump, for generating a stream of molten metal. The dividing wall divides the vessel into a first chamber and a second chamber, wherein part of the second chamber has a height H2. The device for generating a stream of molten metal, which is preferably a molten metal pump, is preferably positioned in the first chamber. When the device operates, it generates a stream of molten metal from the first chamber and into the second chamber. When the level of molten metal in the second chamber exceeds H2, molten metal flows out of the vessel and into the launder. The launder has a horizontal angle of between 0° and −10° to help prevent dross from being pulled by gravity into downstream vessels.



Slag removal apparatus and method

Tue, 28 Apr 2015 08:00:00 EDT

An apparatus (20, 21) and method (80) operable to: feed (82) a granulated feedstock (26) into a chamber (22); apply (84) a melting or sintering energy (28) in programmable scans (30) producing a material deposit (32) overlaid with slag (34) in the chamber (22); position (86) a slag removal device (40, 52) such that its cutting surface (35) is coincident with a top surface (33) of the material deposit; cut or break the slag free (88) from the material deposit with the slag removal device; separate (92) the removed slag from a reusable portion of the granulated feedstock in a separator (42); and feed (94) the reusable portion of the granulated feedstock to the top surface of the material deposit for repeating (96) the above operations.



Bearing heater

Tue, 21 Apr 2015 08:00:00 EDT

Improved induction heating of a rolling bearing without the risk of damaging or blocking the bearing is achieved by controlling the heating cycle as a function of the temperature difference between the inner and outer bearing rings and/or dividing the heating cycle into different portions using different power combinations of at least two induction coils.



Ladle with transfer conduit

Tue, 21 Apr 2015 08:00:00 EDT

Disclosed is a transportable vessel for use in a factory for processing molten metal. The vessel is not connected to a reverbatory furnace and can be moved to different locations in the factory. The vessel includes a transfer conduit in communication with a cavity of the vessel. A molten metal pump can be positioned in the transfer conduit to move molten metal out of an outlet in communication with the transfer conduit and into another vessel without the need to tip or tilt the transportable vessel.



Hardening device

Tue, 21 Apr 2015 08:00:00 EDT

An object of the present invention is to provide a hardening method and a hardening device capable of successfully hardening a shaft and an inner wall of a hole of a work in which the hole is formed close to the shaft on a flat plate. A hardening device for hardening a shaft and an inner wall of a hole, the shaft extending vertically from a flat plate and the hole being formed adjacent to the shaft, includes a first heating coil that is a conductive body facing the shaft and a second heating coil that is a helical conductive body having at least a portion inserted into the hole, so that the first heating coil and the second heating coil heat the shaft and the inner wall of the hole respectively and simultaneously.



Mobile workbench

Tue, 21 Apr 2015 08:00:00 EDT

Provided is a mobile workbench constructed so as to determine that an accident of some kind has occurred and to stop if the speed of the mobile workbench suddenly changes. A mobile workbench (A) travels on a material (Ca) to be processed and performs predetermined processing (welding) by using a processing tool (welding torch (B)) mounted thereon. The mobile workbench (A) comprises: a workbench main body (1); a plurality of wheels (4) which are provided on the workbench main body (1); a drive motor (3a) which drives the wheels (4); an acceleration sensor (10) which detects the acceleration acting on the workbench; and a control unit (12) which is constructed so as to determine that an abnormality has occurred and to stop the drive motor (3a) if a sudden change in speed is detected by the acceleration sensor (10).



Method and system for controlling a cutting torch

Tue, 21 Apr 2015 08:00:00 EDT

A system for controlling a temperature of a flame of a torch for cutting a piece of material, comprising: a valve system fluidly connectable to an oxygen source and a fuel source for receiving a heating oxygen flow and a fuel flow, respectively, and the torch for propagating the heating oxygen and fuel flows thereto, the valve system comprising at least a first adjustable valve and a second adjustable valve for regulating the heating oxygen flow and the fuel flow, respectively; and a control unit comprising a memory and a processor configured for: receiving data indicative of a desired temperature for the flame; determining, from the data, a corresponding amount of heating oxygen and a corresponding amount of fuel adapted to provide the flame with the desired temperature; and adjusting the valves to provide the torch with the corresponding amount of heating oxygen and the corresponding amount of fuel.



Pump for delivering flux to molten metal through a shaft sleeve

Tue, 21 Apr 2015 08:00:00 EDT

A pump for pumping molten metal and delivering flux includes a refractory base that can be submerged in molten metal including an impeller chamber, an inlet and an outlet. A refractory shaft sleeve has upper and lower end portions and is fastened to the base at the lower end portion. A motor is disposed near the upper end portion of the shaft sleeve. A refractory shaft extends in the shaft sleeve and is connected to the motor near the upper end portion of the shaft sleeve. A refractory impeller is connected to the shaft and is rotatable in the impeller chamber. A flux feeding device feeds flux into the shaft sleeve. Also featured is a method for delivering flux in the shaft sleeve of the pump and a method for cleaning flux accretions in the shaft sleeve.



High yield ladle bottoms

Tue, 14 Apr 2015 08:00:00 EDT

A refractory bottom lining for lining the bottom of a metallurgical vessel. The refractory bottom includes a stepped portion and an impact portion. The impact portion is formed of a first refractory material. The stepped portion is formed of a second refractory material and is disposed around the impact portion. The stepped portion includes an upper surface that has a plurality of discrete surface sections. The plurality of discrete surface sections includes an uppermost surface section, at least two intermediate surface sections and a lowermost surface section. Each surface section has a different elevation such that the uppermost surface section has a highest elevation and the lowermost surface section has a lowest elevation. The uppermost surface section, the at least two intermediate surface sections and the lowermost surface section define a continuously downward stepped path from the uppermost surface section to the lowermost surface section.



Vacuum degassing apparatus and vacuum degassing method for molten glass

Tue, 07 Apr 2015 08:00:00 EDT

A vacuum degassing apparatus for molten glass is comprised of an uprising pipe, a vacuum degassing vessel, a downfalling pipe, an upstream side pit that supplies molten glass to the uprising pipe, and a downstream side pit that receives molten glass from the downfalling pipe. The vacuum degassing apparatus for molten glass is further comprised of a separating mechanism that separates a part of molten glass moving from the downfalling pipe to the downstream side pit, and a returning pipe that returns separated molten glass to the upstream side pit.



Crucible and extrinsic facecoat compositions

Tue, 31 Mar 2015 08:00:00 EDT

Crucible compositions and methods of using the crucible compositions to melt titanium and titanium alloys. More specifically, crucible compositions having extrinsic facecoats comprising a rare earth oxide that are effective for melting titanium and titanium alloys for use in casting titanium-containing articles. Further embodiments are titanium-containing articles made from the titanium and titanium alloys melted in the crucible compositions. Another embodiment is a crucible curing device and methods of use thereof.



Method of operating regenerative heaters in blast furnace plant

Tue, 31 Mar 2015 08:00:00 EDT

In a blast furnace plant, at least three regenerative heaters are cyclically operated on blast and on gas: while a regenerative heater is operated on gas, hot flue gas is produced and caused to flow through the regenerative heater so as to heat the heat storage elements; and while a regenerative heater is operated on blast, process gas, i.e. a CO-rich fraction of the top gas, is blown through the regenerative heater so that the process gas takes up heat from the heat storage elements, such that during a changeover of a regenerative heater from on-blast to on-gas operation, the regenerative heater is purged from process gas using flue gas collected after having flown through at least one of the regenerative heaters.



Method for cooling a metallurgical furnace

Tue, 31 Mar 2015 08:00:00 EDT

In a method for cooling a metallurgical furnace having at least one cooling element which is flown through by a cooling mediums, a cooling medium that contains at least one ionic liquid, and preferably consists thereof, is carried through the cooling element, thereby preventing the problems that are associated with water cooling, such as the risk of hydrogen explosions and damage to the furnace lining.



Microcrystalline alloy, method for production of the same, apparatus for production of the same, and method for production of casting of the same

Tue, 31 Mar 2015 08:00:00 EDT

During a process of cooling a hypereutectic Al—Si alloy melt, ultrasonic vibration is applied to the melt to crystallize primary crystal α-Al using, in combination, an ultrasonic transducer (8) that generates the ultrasonic vibration, an ultrasonic horn (7) that is connected to the ultrasonic transducer (8) and transmits the ultrasonic vibration in a specified direction, a treatment vessel (2) that holds the melt and is in contact with the ultrasonic horn (7), and a treatment vessel fixing device (3) that fixes the treatment vessel (2) by pressing the treatment vessel toward the ultrasonic horn (7).



Blast furnace top gas recycling process and corresponding recycling equipment

Tue, 31 Mar 2015 08:00:00 EDT

A process for recycling blast furnace gas is provided. At least one portion of the gases resulting from the blast furnace undergo a CO2 purification step to create a CO-rich gas which is reinjected at a first top injection point at a temperature between 700° C. and 1000° C. through a top injection line, and at a second bottom injection point at a temperature between 1000° C. and 1300° C. through a bottom injection line. The gases from the bottom and top injection lines are heated at a temperature between 1000° C. and 1300° C. A portion of the CO-rich gas exiting the purification step is directly introduced into the top injection line via a cold gas injection line to obtain a temperature between 700° C. and 1000° C. at the first top injection point. The gas that flows through the bottom and top injection points controlled upstream of the system of the heaters. A device is also provided.



Method and atmosphere for extending belt life in sintering furnace

Tue, 24 Mar 2015 08:00:00 EDT

Disclosed herein is a method and gas atmosphere for a metal component in a continuous furnace. In one embodiment, the method and gas atmosphere comprises the use of an effective amount, or about 1 to about 10 percent volume of endo-gas, into an atmosphere comprising nitrogen and hydrogen. In another embodiment, there is provided a method sintering metal components in a furnace at a one or more operating temperatures comprising: providing a furnace comprising a belt comprising a wire mesh material wherein the metal components are supported thereupon; and sintering the components in the furnace in an atmosphere comprising nitrogen, hydrogen, and effective amount of endothermic gas at the one or more operating temperatures ranging from about 1800° F. to about 2200° F. wherein the amount of endothermic gas in the atmosphere is such that it is oxidizing to the wire mesh material and reducing to the metal components.



Apparatus for producing low-oxygen content molybdenum powder

Tue, 24 Mar 2015 08:00:00 EDT

Disclosed is an apparatus for producing low oxygen-content molybdenum powders by reducing MoO3. The apparatus includes a body, a cover to close an upper end of the body, a joint to couple the body with the cover, a bracket located in the body, and a micro-sieve located on an upper portion of the bracket. Metal Mo powders having the oxygen content of 3,000 ppm are obtained by using the apparatus for producing low oxygen-content molybdenum powders by reducing MoO3.



Multiple feeder reactor for the production of nano-particles of metal

Tue, 24 Mar 2015 08:00:00 EDT

The reactor is used for producing nano-particles of metal from volatile moieties in flow through mode. The reactor comprises at least a first feeder and a second feeder on one end of the vessel. The first feeder feeds the moiety in the form of an educt fluid into the reactor. This fluid is a mixture of metal moieties and a bearer fluid, entering the reactor in a vaporized state, in which the bearer fluid is used as a carrier gas. The second feeder is used as a radiator means to heat up the educt fluid within the reactor. By providing the heating fluid through the second feeder control over some environmental conditions like ambient temperature within the reactor is achieved and dissociation of the metal moieties under such controlled conditions leads to quantitative production of selected nano-particle morphologies.



Method for iron-making with full oxygen and hydrogen-rich gas and equipment thereof

Tue, 24 Mar 2015 08:00:00 EDT

A method of ironmaking using full-oxygen hydrogen-rich gas which includes hot transferring and hot charging the high-temperature coke, sinter and pellet into the ironmaking furnace through transferring and charging device, and injecting oxygen and hydrogen-rich combustible gas at a predetermined temperature into the ironmaking furnace through the oxygen tuyere and the gas tuyere disposed at the ironmaking furnace, respectively. It also provides an apparatus for ironmaking using full-oxygen hydrogen-rich gas which includes a raw material system, a furnace roof gas system, a coke oven gas injecting system, a dust injecting system, a slag dry-granulation and residual heat recovering system and an oxygen system. Additionally an apparatus and method for hot transferring and hot charging of ironmaking raw material is disclosed.



Spray quench systems for heat treated metal products

Tue, 24 Mar 2015 08:00:00 EDT

A spray quench system is provided with one or more spray quench rings that eject a controlled volume of quenchant spray onto a workpiece passing through the quench rings. Supply of the quenchant to the quench rings is coordinated with control of the quench rings to selectively change the pressure, quenchant spray exit velocity from the quench rings, flow rate or pattern of the quenchant spray onto the workpiece depending upon mass cooling requirements as the workpiece passes through the quench rings.



Method for carburizing tantalum member, and tantalum member

Tue, 24 Mar 2015 08:00:00 EDT

Provided is a method for carburizing a tantalum member whereby the tantalum member is less deformed by carburization and can be carburized with good flatness of the planar part thereof and in a uniform manner. The method is a method for subjecting a tantalum member 1 made of tantalum or a tantalum alloy and having a planar part 1a to a carburization process for allowing carbon to penetrate the member 1 from the surface toward the inner portion thereof and includes the steps of: setting the tantalum member 1 in a chamber 3 containing a carbon source by supporting the planar part 1a on a plurality of support rods 6 tapered at distal ends 6a thereof; and subjecting the tantalum member 1 to a carburization process by reducing in pressure and heating the interior of the chamber 3 to allow carbon derived from the carbon source to penetrate the tantalum member 1 from the surface thereof.



Method of controlling the thermal balance of the reaction shaft of a suspension smelting furnace and a concentrate burner

Tue, 24 Mar 2015 08:00:00 EDT

The invention relates to a method of controlling the thermal balance of the reaction shaft of a suspension smelting furnace and to a concentrate burner for feeding reaction gas and pulverous solid mater into the reaction shaft of the suspension smelting furnace. In the method, endothermic material (16) is fed by the concentrate burner (4) to constitute part of the mixture formed from the powdery solid matter (6) and reaction gas (5), so that a mixture containing the powdery solid matter (6), reaction gas (5) and endothermic material (6) is formed in the reaction shaft (2). The concentrate burner (4) comprises cooling agent feeding equipment (15) for adding the endothermic material (16) to constitute part of the mixture, which is formed from the pulverous solid matter (6) that discharges from the orifice (8) of the feeder pipe and the reaction gas (5) that discharges through the annular discharge orifice (14).



Tuyere stock arrangement of a blast furnace

Tue, 17 Mar 2015 08:00:00 EDT

Tuyere stock arrangement of a blast furnace includes a tuyere body configured for installation in a shaft furnace wall. The tuyere body includes a front face facing an interior of the shaft furnace and an opposite rear face and a tuyere channel extending between the rear and front faces (24). The stock arrangement includes a blowpipe between the rear face and a hot blast air supply system, the blowpipe having a front portion connecting to the tuyere body and an opposite rear portion connecting to the hot blast air supply system. A fuel injection lance is arranged through the tuyere body and feeds fuel into the shaft furnace. A gas injection lance feeds an oxidizing gas to the shaft furnace and is arranged in the rear portion of the blowpipe to feed oxidizing gas into a central portion of a stream of hot blast air fed through the blowpipe.



Spray quench systems for heat treated metal products

Tue, 17 Mar 2015 08:00:00 EDT

A method of quenching a workpiece is provided with one or more spray quench rings that eject a controlled variable volume of spray quench onto a workpiece passing through the quench rings by dynamically adjusting the axially adjustable distance between the inner and outer ring elements of each quench ring while the workpiece passes through the quench rings in response to mass cooling requirements of the workpiece passing through the quench rings. The quench rings can also be axial adjusted relative to each other in response to the mass cooling requirements. Dynamically adjustable reflected spray guards can be provided to prevent quench spray pattern interference between adjacent quench rings.



Partially-reduced iron producing apparatus and partially-reduced iron producing method

Tue, 10 Mar 2015 08:00:00 EDT

A partially-reduced iron producing apparatus includes: a supplying device laying ignition raw-material pellets on an endless-grate; a heating furnace heating the ignition raw-material pellets; another supplying device laying the raw material pellets on the ignition raw-material pellets; and an exhaust gas circulation device supplying an oxygen-containing gas to the raw-material pellets. The oxygen containing gas is made by circulating part of an exhaust gas discharged from the raw-material pellets and mixing it with air. A partially-reduced iron is produced by thermally reducing the raw-material pellets in a bed height direction thereof through separate combustion and heating regions. The combustion region formed on an upstream side in a travelling direction of the endless grate by supplying the oxygen-containing gas having a high oxygen concentration. The heating region formed downstream of the combustion region in the travelling direction of the endless grate by supplying the oxygen-containing gas having a low oxygen concentration.



Frame for a device for holding and replacing casting plates and assembly

Tue, 10 Mar 2015 08:00:00 EDT

A frame, for a device for holding and replacing plates for transferring molten metal contained in a metallurgical vessel having a casting channel, defines a housing for receiving and holding a plate, when the device is assembled, in the operating position in the vicinity of the casting channel of the metallurgical vessel. The frame is arranged to enable the introduction of the plate into the housing, and the extraction of the plate from the housing, by translation along a plate insertion direction. The housing is formed so as to have an overall planar symmetry in relation to a central longitudinal plane parallel with the plate insertion direction. The frame comprises slots for receiving thrusters intended, when the device is assembled, to apply a force, in the direction of the metallurgical vessel, on a plate inserted in the housing.



Clay gun machine cannon for metallurgical furnaces

Tue, 03 Mar 2015 08:00:00 EST

The invention relates to a clay gun machine cannon (10) for metallurgical furnaces having a pressure cylinder (11) for receiving the plugging mass (13) and a compaction ram (14) for pressing the plugging mass (13) out of a mouthpiece (19) of the pressure cylinder pressed to the tapping hole of the furnace, wherein the pressure cylinder (11) has a cylinder liner having a wear sleeve assembly (18) inserted in the cylinder liner which is made of at least one insert sleeve made of a welded plate section.



Method and system for producing pig iron or fluid steel pre-products

Tue, 03 Mar 2015 08:00:00 EST

A method and a plant for the production of pig iron or liquid steel semi-finished products are shown, metal oxide-containing batch materials and, if appropriate, aggregates being at least partially reduced in a reduction zone by a reduction gas, subsequently being introduced into a smelting zone and being smelted along with the supply of carbon carriers and oxygen-containing gas and along with the formation of the reduction gas. The reduction gas formed in the smelting zone is supplied to the reduction zone, reacted there and drawn off as export gas, CO2 is separated from the export gas, and a product gas is formed which is utilized for the introduction of pulverulent carbon carriers into the smelting zone.



Apparatus for melting and refining impure nonferrous metals, particularly scraps of copper and/or impure copper originating from the processing of minerals

Tue, 24 Feb 2015 08:00:00 EST

An apparatus for melting and refining impure nonferrous metals, comprising a tiltable reverberatory furnace with a furnace body that has a base with a rectangular plan shape and is provided with two mutually opposite heads, which are mutually connected by a bottom wall, by an upper wall or ceiling and by two side walls, the furnace being provided with means for the tilting of the furnace body about an axis which is substantially horizontal and perpendicular to the heads; the furnace has, in a central region of the upper wall, a portion that protrudes upwardly from the remaining portion of the upper wall and is delimited in an upper region by a flying buttress-like wall and laterally by two mutually opposite side walls, the portion having, on the side that faces the flying buttress-like wall, a loading port, which is closed by a movable door.



Torch tip protector

Tue, 24 Feb 2015 08:00:00 EST

A torch tip protector is elastically retained to an oxyacetylene cutting torch tip during transport. The torch tip protector in the preferred embodiment has a protector cap having a generally disc-shaped base and a truncated conical side wall that together form a cup or thimble-shaped torch tip cover. This torch tip cover operatively encompasses a torch tip and thereby operatively blocks access and fouling of the torch tip. To ensure that the protector cap stays engaged with torch tip, a hook secures to and is manually removable from at least one of the torch gas lines. A spring couples to the hook and couples with the protector cap to provide an elastic tension force that draws the protector cap towards hook and thereby secures the protector cap onto the torch tip.



Method and apparatus for removing coolant liquid from moving metal strip

Tue, 24 Feb 2015 08:00:00 EST

Exemplary embodiments of the invention include a method and apparatus for cooling a metal strip that is being advanced in a generally horizontal fashion. The method involves delivering a coolant liquid onto a lower surface of the strip from below across the entire width of the strip, preventing the coolant liquid from contacting the upper surface of the strip, and optionally subsequently removing the coolant liquid from the lower surface. The coolant liquid is prevented from contacting the upper surface by forming a gas-directing channel immediately above the upper surface of the strip adjacent to one or preferably both lateral edges of the strip and forcing a gas through the channel in a direction generally away from a center of the strip towards the one or both lateral edges to deflect coolant liquid away from the upper surface of the strip. The apparatus provides means for carrying out these steps.



Heap leaching aeration system

Tue, 24 Feb 2015 08:00:00 EST

An aeration system for a bed of ore that is laid upon a basal layer has a gas source located upstream for supplying gas and aeration pipes that distribute the gas downstream to the bed. Each aeration pipe has spaced-apart gas emitters that distribute gas to the bed and the aeration pipes extend through the bed towards the basal layer.



Partially-reduced iron producing method and partially-reduced iron producing apparatus

Tue, 24 Feb 2015 08:00:00 EST

A reduction furnace includes a pellet material supplying device forming on a grate an ignition carbon material layer having a predetermined height; an ignition device; and an exhaust gas circulation device supplying an oxygen-containing gas comprising circulated exhaust gas mixed with air, to a packed bed of the pellets heated by a combustion heat of the ignition carbon material layer. A partially-reduced iron is produced by thermally reducing the pellets through a combustion region for the ignition carbon material layer and a heating region, the combustion region formed upstream in a travelling direction of the grate by supplying a gas having a high oxygen concentration, the heating region formed downstream of the combustion region by supplying a gas having a low oxygen concentration.



Sliding nozzle device

Tue, 24 Feb 2015 08:00:00 EST

A sliding nozzle device automatically performs a series of operations of loading and unloading pressure between plates and opening and closing a slide frame; maintaining the pressure without additional operations; and operates at full stroke during molten steel flow control. An auxiliary plate-exchanging mechanism includes slide axes moving in the same direction as a hydraulic cylinder operates, and an arm having a proximal end placed around the slide axis. The plate-exchanging mechanism is fixed on an upside frame. A first engagement pin mounted on the proximal end of the arm is inserted in a first engagement groove in a first engagement member engaging with the slide axis, and second engagement pins mounted on bearings are inserted in second engagement grooves in the slide axes. With movement of the slide axes the engagement pins respectively move in the engagement grooves, thereby rotating the slide axes and the arm.



Supply system for suspension smelting furnace

Tue, 17 Feb 2015 08:00:00 EST

A supply system for providing a suspension smelting furnace with constant and continuous feed is disclosed. The installation of the invention comprises intermediate storage bins for fine-grained feed, a feed rate controller for accurately controlling the feed rate of the fine-grained material, and a pneumatic conveyor for lifting the feed up to the top level of the suspension smelting furnace where the burner of the furnace is adapted. In the installation, the heavy constructions of the storage bins are located close to the ground level and the constructions around and on top of the furnace have been designed essentially lighter than in conventional solutions.



Compressive rod assembly for molten metal containment structure

Tue, 03 Feb 2015 08:00:00 EST

Exemplary embodiments of the invention relate to a compressive rod assembly for applying force to a refractory vessel positioned within an outer metal casing. The assembly includes a rigid elongated rod having first and second opposed ends, a threaded bolt adjacent to the first opposed end of the elongated rod, and a compressive structure positioned operationally between the elongated rod and the bolt. Compressive force applied by the bolt to the elongated rod passes through the compressive structure which allows limited longitudinal movements of the elongated rod to be accommodated by the compressive structure without requiring corresponding longitudinal movements of the bolt. Exemplary embodiments also relate to rod structure forming a component of the assembly, and to a metal containment structure having a vessel supported and compressed by at least one such assembly.



Heating method and system for controlling air ingress into enclosed spaces

Tue, 03 Feb 2015 08:00:00 EST

An apparatus for heating vessels, the vessels having enclosed spaces therein and controlling air ingress into the enclosed spaces through gaps. The method includes providing a lid structure for the vessel having the enclosed space, the lid structure having a burner assembly mounted therein. The burner is configured to provide a predetermined flame diameter. The vessel and lid structure are mated such that the gap is formed between the vessel and the lid structure. Fuel and oxidant are discharged from the burner assembly under conditions to provide the predetermined flame diameter and impart a flame velocity sufficiently large to create an outward gas flow from the enclosed space through the gap and control air ingress.



Tuyere stock arrangement for a blast furnace and method for feeding hot blast into a blast furnace

Tue, 03 Feb 2015 08:00:00 EST

Tuyere stock arrangement (10) of a blast furnace comprising a tuyere (14) having a tuyere body (20) configured for installation in a blast furnace wall (12); the tuyere body (20) having an outer wall (22), a front face (24) and a rear face (26), the tuyere body (20) further having a tuyere channel (28) extending from the rear face (26) to the front face (24), the tuyere channel (28) forming an inner wall (30) in the tuyere body (20). The tuyere stock arrangement (10) further comprises a blowpipe (34) connected between the rear face (26) of the tuyere body (20) and a gas feeding device (38), the blowpipe (34) being configured and arranged so as to feed hot gas, generally hot blast air, from the gas feeding device (38) to the tuyere channel (28) for injection into the blast furnace. The tuyere stock arrangement (10) also comprises an injection lance (40) for feeding a combustible, generally pulverized or granular coal, into the blast furnace at the tuyere level, the injection lance (40) being an coaxial lance comprising an outer pipe and an inner pipe, coaxially arranged within the outer pipe, the outer and inner pipes being arranged for separately conveying oxidizing gas and said combustible, the inner pipe forming a separation wall for separating said combustible from the oxidizing gas. According to an important aspect of the invention, the injection lance (40) is removably arranged in a lance passage (42) formed in the tuyere body (20), the lance passage (42) being arranged between the inner wall (30) and the outer wall (22) of the tuyere body (20) and extending from the rear face (26) to the front face (24), the lance passage (42) opening into a front lace (24) of the tuyere body (20).



Manufacturing method and manufacturing apparatus of hot-rolled steel sheet

Tue, 03 Feb 2015 08:00:00 EST

Provided is a manufacturing method of a hot-rolled steel sheet which enables manufacturing of a hot-rolled steel sheet having excellent surface properties and a fine structure. The manufacturing method of a hot-rolled steel sheet uses a heating device, descaling device, row of finishing mills, cooling device disposed in the row of finishing mills, and rapid cooling device disposed immediately after the row of finishing mills, and the operations of the heating device, cooling device and rapid cooling device are controlled, thereby controlling a temperature T1 of the material to be rolled on an entry side of the row of finishing mills, a temperature T2 of the material to be rolled on an entry side of a final stand in the row of finishing mills, and a temperature T3 of the material to be rolled on an exit side of the rapid cooling device.



Supply device for a machine for transversely cutting at least one strip of flexible material

Tue, 03 Feb 2015 08:00:00 EST

A supply device (10) for a machine for transversely cutting two strips (11 and 12) of a flexible material, in particular a strip of paper, moving continuously, to produce separate stacks of documents cut transversely according to predetermined formats. The device comprises lower and upper driving mechanisms (13, 14) associated with the two strips (11, 12) of flexible material respectively, which each include a mechanically rotated first roller (13a, 14a) and a freely rotatable second bearing roller (13b and 14b). The driving mechanism is mounted on a frame (15) supported by a movable platform (16) which is rigidly connected to a linear actuator (17) arranged to be moved transversely with respect to the direction of movement of the strips (11 and 12). Optical reading cells (11a, 11b, 12a, 12b) define the operating modes of the driving servomotors (13b and 14b) and of the linear actuator (17).



Wall lining of industrial ovens

Tue, 03 Feb 2015 08:00:00 EST

A wall lining of industrial ovens for protecting from corrosion, in particular, a heat-resistant wall made of concrete, steel, sheet metal, or the like. The lining of the wall is made of at least two layers, wherein a layer is pressurized as a blocking layer.



Method for automatic quantification of dendrite arm spacing in dendritic microstructures

Tue, 27 Jan 2015 08:00:00 EST

A method to automatically quantify dendrite arm spacing in dendritic microstructures. Once a location of interest in a cast material specimen has been identified, the information contained in it is automatically analyzed to quantify dendrite cell size information that is subsequently converted into a quantified dendrite arm spacing through an empirical relationship or a theoretical relationship. In one form, the relationship between DCS and DAS is such that the DAS in dendritic structure of cast aluminum alloys may be automatically determined from the measurement of one or more of dendrite cell size and the actual volume fraction of the eutectic phases in the local casting microstructure. Non-equilibrium conditions may be accounted for in situations where a theoretical volume fraction of a eutectic phase of the alloy in equilibrium condition is appropriately modified. Thus, in situations where equilibrium conditions—such as those where the casting is cooled very slowly during solidification—does not apply (such as during rapid cooling and consequent solidification), the eutectic measured in the non-equilibrium condition, which can be smaller than the theoretical value in equilibrium, can be accounted for.