Subscribe: Untitled
http://www.freepatentsonline.com/rssfeed/rsspat244.xml
Added By: Feedage Forager Feedage Grade B rated
Language: English
Tags:
aircraft  assembly  configured  control  device  flight  includes  method  mounting  plurality  system  thrust  upper  wing 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: Untitled

Untitled





 



Invertible aircraft

Tue, 01 Dec 2015 08:00:00 EST

A rotorcraft including a fuselage, one or more motor-driven rotors for vertical flight, and a control system. The motors drive the one or more rotors in either of two directions of rotation to provide for flight in either an upright or an inverted orientation. An orientation sensor is used to control the primary direction of thrust, and operational instructions and gathered information are automatically adapted based on the orientation of the fuselage with respect to gravity. The rotors are configured with blades that invert to conform to the direction of rotation.



Landing gear, an aircraft, and a method

Tue, 11 Aug 2015 08:00:00 EDT

The present invention relates to landing gear (5) having at least one undercarriage (10) comprising a landing gear leg (11) carrying at least one wheel (12). The undercarriage (10) includes a retraction actuator (20) having an electric motor (23), blocking means (30) for blocking the actuator in the retraction position and for enabling the retraction actuator to be positioned in the “landing gear extended” position by gravity, first monitoring means (35) for monitoring the operation of the retraction actuator (20), first control means (65) for controlling the refraction actuator (20), and second control means (75) for controlling the blocking means (30).



Programmable reverse thrust detent system and method

Tue, 26 May 2015 08:00:00 EDT

A reverse thrust detent system for an aircraft includes a throttle quadrant having an intermediate reverse thrust detent position, a reverse thrust scheduling system interfacing with the throttle quadrant, at least one aircraft engine interfacing with the reverse thrust scheduling system and a programmable input interfacing with the reverse thrust scheduling system and adapted to receive an engine reverse thrust setting. The reverse thrust scheduling system is adapted to operate the at least one aircraft engine according to the engine reverse thrust setting responsive to actuation of the intermediate reverse thrust detent position of the throttle quadrant. A reverse thrust detent method for an aircraft is also disclosed.



Adaptive aerodynamic control system for projectile maneuvering

Tue, 26 May 2015 08:00:00 EDT

A projectile control system includes a plurality of fins, a drive mechanism coupled to each of the plurality of fins to enable the plurality of fins to be independently retracted or deployed, and a control mechanism in communication with the drive mechanisms to independently control the deployment or retraction of the plurality of fins. A projectile having the projectile control system and a method of operating a projectile are also described herein.



Trajectory modification of a spinning projectile

Tue, 26 May 2015 08:00:00 EDT

The invention is a projectile, device and system having a roll control device which may be fixed or deployable, for providing torque counter to the spin of the projectile and providing drag on the projectile. The roll control device includes a guidance collar rotatably attached to the projectile located near a front end of the projectile wherein the guidance collar includes one or more guidance collar aero-surfaces shaped to provide torque counter to the spin on the projectile. The guidance collar aero-surfaces may be controlled by a brake and guidance electronics on the projectile. The invention also includes a body collar fixedly attached to the projectile aft of the guidance collar, wherein the body collar includes one or more body collar aero-surfaces and fixed or deployable drag devices. Another embodiment use only a guidance collar aero-surfaces to orient a fixed drag device relative to an Earth inertial reference frame to create asymmetrical drag on the projectile and thereby altering its trajectory.



Aircraft cable routing harness

Tue, 26 May 2015 08:00:00 EDT

A harness is provided comprising a body having a series of electrical conductors embedded therein and substantially running along the length thereof. The body may be part of a structural component such as stringer.



Variable length light shield for an electro-optical sensor within a nose cone

Tue, 26 May 2015 08:00:00 EDT

A variable length light shield is disclosed for an electro-optical sensor within a nose cone. The light shield includes a base, a telescopic shade supported by the base, and a ring rotatably supported about the base. The light shield also includes a guide tube disposed proximate the ring with an end extending away from the ring about a side of the telescopic shade. The light shield further includes an extension spring supported by the guide tube with an end coupled to the telescopic shade. Additionally, the light shield includes a cable extending through the guide tube and the extension spring, with one end of the cable coupled to the ring and another end of the cable coupled to the telescopic shade. The extension spring is configured to exert a force on the telescopic shade to extend the telescopic shade. Rotation of the ring causes retraction of the telescopic shade.



Control surface assembly

Tue, 26 May 2015 08:00:00 EDT

An aerodynamic control surface assembly comprising: an aerodynamic control surface (4); an actuator (10) for controlling deployment of the control surface; and a locking mechanism (30) moveable from a locked to an unlocked position. When the locking mechanism is set to the locked position, the actuator is operatively coupled to the control surface and the control surface can move in dependently of the actuator when the locking mechanism is set to the unlocked position. Such an assembly may be used in an aircraft to prevent clashing between a deployed flap (16) and a drooped spoiler (4) in the event of an actuator control systems failure.



Split spiroid

Tue, 26 May 2015 08:00:00 EDT

The spiroid wing tip according to embodiments of the invention including a continuous segmental assembly having a closed loop frontal profile comprising a lower near vertical segment, a horizontal segment, a vertical segment, a second horizontal upper segment, and a near vertical segment. Accordingly to some embodiments of the invention, the spiroid profile is lowered with respect to the wing chord plane, such that a portion of the spiroid wing tip extends below the wing chord plane.



System and method for aircraft incident mitigation

Tue, 26 May 2015 08:00:00 EDT

A system and method for mitigating an aircraft incident is provided. The invention includes an aircraft panic component coupled to a terminal component. The aircraft panic component facilitates identification of a panic situation and communicates information associated with the panic situation to the terminal component. The aircraft panic component is further operative to at least partially disable a navigation system and/or operational system of an aircraft. The aircraft can then be sent to a safe zone, navigated remotely and/or a course of action for the aircraft can be determined. A safe zone component is adapted to facilitate identification of a course of action for the aircraft based at least in part upon aircraft positional information, aircraft condition information and/or aircraft resource(s). Further, aircraft navigational information and/or aircraft operational information can be sent via an aircraft communication component to a remote system having a remote communication component and a remote analyzing component facilitating transfer of information related to navigational and/or operational system(s) of the aircraft.



Method for simulating the movement behaviour of a fluid in a closed, moving container

Tue, 26 May 2015 08:00:00 EDT

A method for simulating the movement behavior of a fluid in a closed moving container is provided. The simulation is based on the determination of the potential movement path of the center of gravity of the volume of the fluid as an elliptical trajectory situated in a disturbance plane having certain semi-axes.



Absorbent dome for a radiating collector tube

Tue, 26 May 2015 08:00:00 EDT

A device for thermal monitoring a piece of equipment, which is integrated on a craft placed in a forced vacuum environment, an outside part of the equipment projecting outside of a wall of the craft and being subjected to a solar radiation flux, includes an absorbent screen that is suitable for being placed between the outside part of the equipment and the wall of the craft, whereby this absorbent screen has—on at least one portion of its front face, designed to be placed on the side removed from the wall of the craft—an absorptivity αSOLAR that is the largest possible in the field of solar radiation, coupled to a low emissivity εIR in the infrared spectrum. The absorbent screen is made of a very heat-conductive material and has—on at least a portion of its rear face, suitable for being oriented toward the wall of the craft—a high emissivity εIR in the infrared spectrum, typically greater than or equal to 0.7.



Space debris remover

Tue, 26 May 2015 08:00:00 EDT

A space debris remover aiming to remove a space debris object in earth orbits. Angular thrust calculation unit calculates angular thrust. Radial thrust calculation unit calculates radial thrust based on the angular thrust, estimated angular momentum and estimated space debris mass. A foam bonding mechanism connects the space debris remover and the space debris object. A space debris removal controller calculates firing time, and sends a space debris removal control signal comprising the radial thrust, the angular thrust and the firing time. A plurality of first stage thrusters generate the radial thrust and the angular thrust after the firing time. After the stage separator separates a first stage and a second stage of the space debris remover, a plurality of second stage thrusters generate the radial thrust and the angular thrust, and propel the space debris object towards the sun.



Method and apparatus for contingency guidance of a CMG-actuated spacecraft

Tue, 26 May 2015 08:00:00 EDT

Methods and apparatus are presented for spacecraft operation using non-Eigen axis attitude transitions via control momentum gyroscopes (CMGs) to avoid or mitigate singularities by providing a time-varying attitude command vector including a plurality of time-varying attitude command signals or values representing a plurality of spacecraft states and control trajectories as a guidance command input to an attitude controller of the spacecraft without modifying the spacecraft feedback control law.



Systems and methods for providing energy to support missions in near earth space

Tue, 26 May 2015 08:00:00 EDT

A system has a plurality of spacecraft in orbit around the earth for collecting energy from the Sun in space, using stimulated emission to configure that energy as well defined states of the optical field and delivering that energy efficiently throughout the region of space surrounding Earth.



Devices configured to provide pre-launch support of kites

Tue, 26 May 2015 08:00:00 EDT

Certain embodiments described herein are directed to devices configured to retain, at least for some period, and provide pre-launch support kites such as stunt kites. In certain instances, the device positions stunt kites of various sizes and design, including, for example, delta wing kits, diamond kits and foil kits, in a reclined position to provide pre-launch stability and wind flow/spill-over across the face of the kite to help prevent unintentional or premature launch. If desired, optional control line upright supports can be present that permit minimum control line pull-back thereby reducing the recline of the kite to bring the face of the kite into the wind and thereby launch the kite. The control line upright supports may also prevent the kite from falling completely face down on the surface, thereby requiring a reset of the kite on the device.



Fuel transfer system controlled by float valves

Tue, 26 May 2015 08:00:00 EDT

A fuel transfer system for an aircraft includes an upper tank, a lower tank, a fuel transfer line connecting the upper tank to the lower tank, an upper fuel transfer line outlet in the lower tank, a lower fuel transfer line outlet in the lower tank, an upper float valve associated with the upper fuel transfer line outlet, and a lower float valve associated with the lower fuel transfer line outlet. The upper fuel transfer line outlet, which is in the lower tank, is in fluid communication with the upper tank. The lower fuel transfer line outlet, which is located in the lower tank, is in fluid communication with the upper tank.



Refueling boom disconnection system

Tue, 26 May 2015 08:00:00 EDT

A method and apparatus comprising a refueling controller. The refueling controller is configured to receive data about a current rate of movement of a refueling boom while the refueling boom is in contact with a receiver aircraft during flight. The refueling controller is further configured to disconnect the refueling boom from the receiver aircraft based on the current rate of movement of the refueling boom and a current position of the refueling boom.



Aircraft thermal insulation

Tue, 26 May 2015 08:00:00 EDT

The invention provides an arrangement and methods for thermally insulating aircraft, particularly but not exclusively for when the aircraft is operating in extremely hot or cold conditions, and describes an aircraft skin construction including a foam-stiffened CFC sandwich panel forming part of the aircraft outer skin mounted to an underlying load bearing aircraft structure, wherein the panel at the mounting to the structure includes two outer layers of CFC material with an inner layer of foam material sandwiched therebetween.



Attachment devices for rotorcraft front windshield

Tue, 26 May 2015 08:00:00 EDT

According to one embodiment, a windshield attachment device for coupling a windshield to a body includes a fastener portion, a bolt, and an elastomeric load isolator. The fastener portion has an opening therethrough. The bolt is configured to extend through the opening of the fastener portion and couple the fastener portion to the body. The elastomeric load isolator surrounds at least a portion of the fastener portion and separating the fastener portion from the windshield.



Coupling assembly

Tue, 26 May 2015 08:00:00 EDT

A coupling assembly for joining a first component to a second component, the assembly comprising a shaft for connecting to a first component, and a bracket including a mounting plate for connecting to a second component. The bracket has a bracket arm extending from the mounting plate, and a head having a through-bore on the bracket arm. The shaft is received in the through-bore. A setting device acts between the head and the shaft for setting of the position of the shaft with respect to the head in the axial direction of the shaft. The assembly further includes one or more spherical bearing surfaces, which permit self-alignment of the setting device to accommodate tilting of the shaft with respect to the head about a central point in two orthogonal directions. Also, a joint comprising a first component joined to a second component by one or more of the coupling assemblies. Also, a method of forming a joint using one or more of the coupling assemblies.



Arrangement of aerodynamic auxiliary surfaces for an aircraft

Tue, 26 May 2015 08:00:00 EDT

An arrangement of aerodynamic auxiliary surfaces is configured for being arranged on the underside of an aircraft and furthermore includes a longitudinal axis and at least one aerodynamic auxiliary surface, wherein the aerodynamic auxiliary surface is laterally offset referred to the longitudinal axis, and wherein the aerodynamic auxiliary surface is configured for generating vortices when it is subjected to an oncoming air flow. This makes it possible to compensate vortices caused by the shape of the aircraft such that the directional stability of the aircraft can be improved and the aerodynamic drag may be reduced.



Radio frequency shielding system

Tue, 26 May 2015 08:00:00 EDT

An assembly for shielding an aircraft from electromagnetic energy may include a window mounting configured to be conductively coupled to an aperture in a fuselage of an aircraft. The window mounting may include a window pane having an electromagnetically-reflective coating for reflecting electromagnetic energy. The window pane may remain electrically isolated from the fuselage prior to the electromagnetic energy exceeding a frequency of approximately 1 GHz. The window mounting may further include a capacitive gasket capacitively coupling the window pane to the fuselage after the frequency of the electromagnetic energy reflected by the window pane exceeds approximately 1 GHz.



Headrest assembly

Tue, 26 May 2015 08:00:00 EDT

A headrest assembly (1) for an ejection seat, comprising: a support mounting (2); and a pair of inflatable side beams (3), each attached at one end to the support mounting and spaced apart from one another, the side beams (3) being configured to be inflated from a stowed configuration to a deployed configuration in which the side beams extend from the support panel, the side beams (3) configured to deploy through: a capturing phase, during which the side beams are partially inflated from the stowed configuration such that they extend outwardly and upwardly from the support mounting and away from one another to surround the head of an occupant of the ejection seat toward a central location with respect to the support mounting.



Floor for an aircraft cargo compartment and method for the assembly thereof

Tue, 26 May 2015 08:00:00 EDT

In conventional aircraft cargo compartments panels or similar flat floor elements are fastened to floor beams or similar supporting elements that are installed in the body of the aircraft. Subsequently functional units such as roller elements, latches or PDUs are mounted and connected to one another by way of appropriate control conductors. It is proposed to fasten the floor elements permanently to the supporting beams so as to form prefabricated floor modules and to install these floor modules in the aircraft.



Space efficient lavatory module for commercial aircraft

Tue, 26 May 2015 08:00:00 EDT

A space efficient lavatory module for commercial aircraft includes an aft facing concave wall recess that provides a greater distance from an upper, forward facing portion of a cabin structure, such as an aircraft passenger seat to avoid having a passenger's head impact the aft facing lavatory or enclosure wall in a sudden aircraft deceleration. The aft facing concave wall recess also provides space for mounting of a protective cushion, in order to reduce a passenger's risk of head trauma in a sudden deceleration, as well as other items, such as a video monitor, a bassinet or infant bed, without inhibiting passenger movement.



Integrated aircraft galley system

Tue, 26 May 2015 08:00:00 EDT

An integrated aircraft galley structure includes a service module having a plurality of galley inserts including at least one oven and at least one refrigeration unit. The service module is formed with a plurality of bays sized to receive the plurality of galley inserts, along with a human machine interface for controlling all of the galley inserts. The service module further includes a plurality of galley insert modules for controlling each galley insert, and an insert power and control unit for each galley insert for controlling power to said insert. The entire system is controlled by a galley power and control unit for controlling each of the insert galley power and control units, and an AC distribution unit for distributing power to the insert power and control units.



Electromechanical actuator for an aircraft control surface, and an aircraft provided with such an actuator

Tue, 26 May 2015 08:00:00 EDT

An electromechanical actuator for a movable flight control surface of an aircraft, the actuator comprising an electric motor having an outlet shaft with first and second directions of rotation, a movement transmission arranged to connect the outlet shaft of the motor to the movable flight control surface, and a control unit for controlling the motor. The transmission incorporates a pawl device arranged to oppose the transmission of movement in the first direction of rotation, and the control unit is connected to a pawl declutching member for declutching the pawl and enabling movement to be transmitted in the first direction of rotation.



Safety aileron system

Tue, 26 May 2015 08:00:00 EDT

Individually operable ailerons pivotable to extend a forward end below a bottom wing surface and a rearward end above a top wing surface. The extended aileron forward end increases drag and subsumes the rudder function in the turn, while the aileron rear end produces drag and airflow redirection to reduce lift on the wing. The advantage of the safety ailerons is that habitual or instinctive pilot inputs to the yoke will recover from a dropped-wing stall at low speed and altitude, while conventional ailerons require counter-intuitive pilot actions to avoid crashing in such conditions.



Passive torque balancing in a high-frequency oscillating system

Tue, 26 May 2015 08:00:00 EDT

A passively torque-balanced device includes (a) a frame; (b) a drivetrain including a drive actuator mounted to the frame and configured for reciprocating displacement, an input platform configured for displacement by the drive actuator, a plurality of rigid links, including a proximate link and remote links, wherein the rigid links are collectively mounted to the frame, and a plurality of joints joining the rigid links and providing a plurality of non-fully actuated degrees of freedom for displacement of the rigid links, the plurality of joints including a fulcrum joint that is joined both to the input platform and to the proximate rigid link; and (c) at least two end effectors respectively coupled with the remote links and configured for displacement without full actuation.



Towable autogyro system having repositionable mast responsive to center of gratvity calculations

Tue, 26 May 2015 08:00:00 EDT

An unmanned, towable aerovehicle is described and includes a container to hold cargo, an autogyro assembly connected to the container and to provide flight characteristics, and a controller to control operation the autogyro assembly for unmanned flight. The container includes a connection to connect to a powered aircraft to provide forward motive force to power the autogyro assembly. In an example, the autogyro assembly includes a mast extending from the container, a rotatable hub on an end of the mast, and a plurality of blades connected to the hub for rotation to provide lift to the vehicle. In an example, an electrical motor rotates the blades prior to lift off to assist in take off. The electrical motor does not have enough power to sustain flight of the vehicle.



Rotor configuration for reaction drive rotor system

Tue, 26 May 2015 08:00:00 EDT

A rotor system is disclosed for a reactive drive rotary wing aircraft. Apparatus and methods are disclosed for maintaining the rigidity of the rotor and eliminating play between flight controls and the rotor by mounting swashplate actuators to a flange rigidly secured to the mast. Methods are disclosed for modulating the temperature of oil pumped over one or more of the mast bearing, swashplate bearing, and spindle bearing. The temperature of air passively or actively drawn through rotor may also be modulated to maintain bearing temperature within a predetermined range. Structures for reducing pressure losses and drag on components due to air flow through the rotor are also disclosed. A rotor facilitating thermal management by oil and air flow is also disclosed. Surfaces interfacing between the swashplate and the mast and between control rods and the swashplate or pitch horn may bear a solid lubricant layer.



Method of controlling a group of engines, and an aircraft

Tue, 26 May 2015 08:00:00 EDT

A method of controlling a group (2) of engines developing a necessary power (Wnec) for driving a rotor (3), said group (2) of engines having at least one electrical member (4), electrical energy storage means (5), and a first number n of engines (6) that is greater than or equal to two. A processor unit (10) executes instructions for evaluating a main condition as to whether the group of engines can develop the necessary power while resting one engine, and if so for resting one engine and accelerating a second number engines not at rest, and for causing the electrical member to operate in motor mode, if necessary, the electrical member operating temporarily in electricity generator mode when the storage means are discharged.



UAV kit

Tue, 26 May 2015 08:00:00 EDT

The embodiments herein disclose a personal UAV kit for storing, preparing and remote control of micro UAVs (40). The UAV kit includes a base unit (10), a control unit (30) and at least one UAV. The UAVs can typically be a winged aircraft with foldable wings or a helicopter with a two-bladed or foldable rotor. The base unit comprises UAV compartments for housing at least one UAV, bay (14) for storing the control unit, batteries and electronic components for charging, communication, control and processing and storing of data. In addition, the system includes an eye near display device for viewing system information and sensor data, typically live video, transmitted from the UAV.



Electric de-icing device and related monitoring system

Tue, 26 May 2015 08:00:00 EDT

The invention relates to a de-icing device for an element of a nacelle of a turbojet engine, including at least one heating resistant mat connected to at least one electrical power source (3) and thus defining an assembly (1) of resistant mats, characterized in that the assembly of resistant mats includes one or more subassemblies of resistant mats, each subassembly in turn including one or more resistant mats of the assembly, and each subassembly of resistive mats having a different ohmic value.



Method and device for creating an aircraft flight plan

Tue, 19 May 2015 08:00:00 EDT

A method of creating at least one flight plan of an aircraft includes entering a creation objective which illustrates a type and general characteristics of the flight plan to be created, automatically generating a flight plan outline, automatically generating a targeted request for information relating to missing parameters, entering the requested information relating to the missing parameters, and supplementing automatically the flight plan outline and automatically deleting any discontinuities to create, in a definitive manner, the flight plan.



Airport surface collision-avoidance system (ASCAS)

Tue, 19 May 2015 08:00:00 EDT

Systems and methods for performing airport surface collision-avoidance. A wingtip-mounted camera allows the pilot to positively ascertain that the wingtip will clear objects located in the video. An exemplary system implemented on an aircraft includes a wingtip module having a camera that generates a video stream and a communication device that transmits the generated video stream. A processor receives the video stream and generates a reticule for the video stream. A display device simultaneously presents the video stream and the reticule. The reticule includes a horizon line and is based on a focal length of a lens of the camera and height of the camera above ground. The reticule includes curved and/or straight distance lines and curved or straight travel lines. The travel line(s) correspond to at least one aircraft component or a zone of importance and are based on location of the camera and trajectory of the aircraft.



Flight deck lighting for information display

Tue, 19 May 2015 08:00:00 EDT

A method and apparatus for lighting a flight deck on an aircraft. A status of the aircraft is identified by a processor unit. The processor unit controls the lighting on the flight deck in response to the status of the aircraft to indicate the status of the aircraft.



Control system with regenerative heat system

Tue, 19 May 2015 08:00:00 EDT

An exoatmospheric vehicle uses a control system that includes a thrust system to provide thrust to control flight of the vehicle. A regenerative heat system is used to preheat portions of the thrust system, prior to their use in control of the vehicle. The heat for preheating may be generated by consumption of a fuel of the vehicle, such as a monopropellant fuel. The fuel may be used to power a pump (among other possibilities), to pressurize the fuel for use by thrusters of the thrust system. The preheated portions of the thrust system may include one or more catalytic beds of the thrust system, which may be preheated using exhaust gasses from the pump. The preheating may reduce the response time of the thrusters that have their catalytic beds preheated. Other thrusters of the thrust system may not be preheated at all before operation.



Reinforced aircraft fuselage panel and method of manufacture

Tue, 19 May 2015 08:00:00 EDT

A fuselage panel made of composite material having a skin with an opening, at least part of the contour of which is reinforced by an integrated reinforcement made of composite material. The fuselage panel includes at least one liner made of composite material which is attached to and superposed on the reinforced skin portion and participates at least partially in defining the contour of the opening, the panel additionally including consolidating members, each passing at least partially through the liner and at least partially through the reinforced skin portion.



Safety seat and method for reducing stress on an occupant of a motor vehicle

Tue, 19 May 2015 08:00:00 EDT

In a method for reducing the impact of a force upon a person seated in a safety seat of a motor vehicle at least a seat unit of the safety seat is restrained at least in part by at least one support strap. The support strap is formed with an extension piece configured to lengthen when exposed to a load as a result of an accident or explosion. A winding unit holds the support strap to shorten an effective length of the support strap and to build up a force to maintain the support strap under tension after the support strap underwent a lengthening in an area of the extension piece as a result of a load caused by a force resulting from an accident or explosion so as to reestablish an effective length of the support strap for lengthening during a subsequent force impact.



Cabin air compressor support bracket

Tue, 19 May 2015 08:00:00 EDT

A support bracket for a cabin air compressor (CAC) assembly includes a CAC mounting portion with a plurality of CAC mounting holes distributed in an arc configuration along a CAC mounting hole circle radius. A support portion includes a ramped face that transitions to an upper lug portion and a substantially perpendicular face relative to the CAC mounting portion. An upper lug extends from the upper lug portion. The upper lug includes a coupling hole that is offset from a first CAC mounting hole of the CAC mounting holes at a length in a first direction and a length in a second direction. A ratio of the CAC mounting hole circle radius to the length in the first direction is between 2.14 and 2.20, and a ratio of the CAC mounting hole circle radius to the length in the second direction is between 1.16 and 1.19.



Integrated seat mounted inceptor

Tue, 19 May 2015 08:00:00 EDT

An inceptor is provided including a control stick mounted to a seat. The control stick is movable about at least a first axis. A fly-by-wire inceptor control system is housed within a portion of the seat. The inceptor control system is configured to provide input signal indicative of movement of the control stick to a flight control system.



Passive adaptive structures

Tue, 19 May 2015 08:00:00 EDT

Embodiments of an aerodynamic structural insert frame comprise a leading edge, a trailing edge opposite the leading edge, and at least one cavity between the leading edge and trailing edge, wherein the aerodynamic structural insert frame is configured to deflect upon activation by an external stimulus; at least one deformable buckling member extending the distance between opposite edges of the cavity, wherein the deflection of the aerodynamic structural insert frame is configured to trigger deflection of the deformable buckling member; a pivot region; and at least one stopper bar attached to and extending from one edge of the cavity a distance less than the distance between opposite edges of the cavity, wherein the stopper bar is configured to stop the deflection of the aerodynamic structural insert and the buckling member when the stopper bar strikes an opposite edge of the cavity.



Wing tip device

Tue, 19 May 2015 08:00:00 EDT

A wing tip device for fixing to the outboard end of a wing, the wing defining a wing plane, includes: an upper wing-like element projecting upwardly with respect to the wing plane and having a trailing edge; and a lower wing-like element fixed with respect to the upper wing-like element and having a root chord and a trailing edge, the lower wing-like element root chord intersecting with the upper wing-like element, and the lower wing-like element projecting downwardly from the intersection. The upper wing-like element is larger than the lower wing-like element and the trailing edge of the lower wing-like element is adjacent the trailing edge of the upper wing-like element at the intersection. An included angle between the upper and lower wing-like elements at the intersection is less than, or equal to, 160 degrees.



Remote controlled aerial reconnaissance vehicle

Tue, 19 May 2015 08:00:00 EDT

A radio controlled UAV is disclosed. The UAV includes a parachute, with a cylindrical power and control module suspended vertically below the parachute. In one embodiment, a propulsion source is mounted on top of the power and control module with control lines connected to the module below the propulsion source, and in another embodiment the power and control module is suspended from a point above a propulsion source. The UAV is controlled by radio controls from a hand held controller, with actuators retracting and letting out control lines attached to the parachute in order to control direction of the parachute. The UAV may be launched from a tube using a pressurized tank with a nozzle expelling gas from the tank, the tank and nozzle towing a canister from which the UAV is deployed.



Carrier for space craft

Tue, 19 May 2015 08:00:00 EDT

A spacecraft carrier is disclosed. The carrier has a large internal volume for housing at least one spacecraft. The carrier can be used as a repair and maintenance facility in space for spacecraft. Manned and unmanned devices can be stored, repaired and resupplied. The carrier can also transport a number of spacecraft to other locations allowing for an efficient coordinated movement of many spacecraft.



Baggage holder for an aircraft and aircraft having the baggage holder

Tue, 19 May 2015 08:00:00 EDT

Baggage compartment 1 for an aircraft, wherein the baggage compartment 1 comprises a housing 2 and a baggage holder 3, wherein the baggage holder 3 is swivel-mounted about a swivel axis A in the housing 2, wherein, the swivel axis A intersects, in its longitudinal extent, a holder side wall 32 of the baggage holder 3 and/or a housing side wall 21 of the housing 2, wherein the baggage holder 3 can be moved from a closed position G into an open position Ö with a first swivel movement S1 and the baggage compartment 1 is opened and wherein the baggage holder 3 can be moved from the open position Ö into the closed position G with a second swivel movement S2 and the baggage compartment 1 is closed, wherein the baggage compartment 1 comprises a drive device 6 having at least one drive motor 9, wherein the drive device 6 is designed to drive the baggage holder 3 during the first and/or second swivel movement S1; S2 and to open or close the baggage compartment 1, wherein the drive device 6 is connected to the holder side wall 32 on one side and to the housing side wall 21 on the other side.



Device for accommodating objects, trolley, method for manufacturing a trolley, as well as transport means

Tue, 19 May 2015 08:00:00 EDT

A device for accommodating objects, in particular for use in an airplane, comprises at least one panel. The panel has at least one outer edge which is provided with a rim in order to form a shock-absorbing edge. The rim comprises plastic that is integrally molded onto the outer edge of the panel. The device can be an airplane trolley, folding trolley, container or galley.



Counterbalance mechanism for bottom-hinged aircraft fuselage doors

Tue, 19 May 2015 08:00:00 EDT

A counterbalance mechanism for counterbalancing weight of a bottom-hinged door (such as a clamshell-type airstair door of an aircraft) includes an operator handle, a hoist rod pivotally connected at one end to the operator handle and at an opposite end thereof to the door near a bottom region thereof. A force accumulator assembly is provided which includes a force biasing member which accumulates and dissipates a bias force when opening and closing the door, respectively, to provide mechanical counterbalance to the weight of the door. A bellcrank assembly operatively connects the operator handle to the force accumulator. In such a manner, weight counterbalancing of the door is achieved.