Subscribe: Untitled
http://www.freepatentsonline.com/rssfeed/rsspat205.xml
Added By: Feedage Forager Feedage Grade B rated
Language: English
Tags:
copper  electrode  fluid  foil  includes  layer  material  metal  method  methods  process  sample  substrate  surface  water 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: Untitled

Untitled





 



Nano-porous membrane based sensors

Tue, 29 Dec 2015 08:00:00 EST

Sensors include nano-porous alumina membranes that are sensitized by immobilization of antibodies in the nano-pores. The nano-membranes can be sensitized to respond to a single target compound, or different portions of the nano-membrane can be differently sensitized. Capture of the target compound can be detected based on a spectral signature associated with electrical conductance in the nano-pores.



Sidewalls of electroplated copper interconnects

Tue, 26 May 2015 08:00:00 EDT

A method including depositing an alloying layer along a sidewall of an opening and in direct contact with a seed layer, the alloying layer includes a crystalline structure that cannot serve as a seed for plating a conductive material, exposing the opening to an electroplating solution including the conductive material, the conductive material is not present in the alloying layer, applying an electrical potential to a cathode causing the conductive material to deposit from the electroplating solution onto the cathode exposed at the bottom of the opening and causing the opening to fill with the conductive material, the cathode includes an exposed portion of the seed layer and excludes the alloying layer, and forming a first intermetallic compound along an intersection between the alloying layer and the conductive material, the first intermetallic compound is formed as a precipitate within a solid solution of the alloying layer and the conductive material.



Method for the production of a flat steel product and flat steel product

Tue, 26 May 2015 08:00:00 EDT

A flat steel product having a base layer of a steel material and a multilayer coating applied thereto, and a method for producing the flat steel product. The method having the following steps: providing a steel base layer; applying a zinc layer to the base layer by electrolytic coating; applying an aluminum layer to the surface of the zinc layer, wherein no treatment is made to the surface of the zinc layer in regard to the oxides and sulfides present thereon at the end of the electrolytic zinc coating step or occurring during the course of the aluminum coating step; applying a magnesium layer to the aluminum layer; and subsequently heat treating the flat steel product in such a way that an MgZn2 layer forms in the coating above the Al layer.



System and method for renewable resource production, for example, hydrogen production by microbial electrolysis, fermentation, and/or photosynthesis

Tue, 26 May 2015 08:00:00 EDT

System and method for sustainable economic development which includes hydrogen extracted from substances, for example, sea water, industrial waste water, agricultural waste water, sewage, and landfill waste water. The hydrogen extraction is accomplished by thermal dissociation, electrical dissociation, optical dissociation, and magnetic dissociation. The hydrogen extraction further includes operation in conjunction with energy addition from renewable resources, for example, solar, wind, moving water, geothermal, or biomass resources.



Biological sample measuring device

Tue, 26 May 2015 08:00:00 EDT

A biological sample measuring device including a mounting portion to which a biological sample measuring sensor is mounted, a voltage application section that applies voltage to a counter electrode of the biological sample measuring sensor mounted to the mounting portion, amplifiers that are selectively connected to a working electrode of the biological sample measuring sensor, and a determination section that is connected to these amplifiers. The determination section has a threshold determination section that determines a voltage value obtained by voltage conversion of the current value of the working electrode, a same determination section that selectively connects the amplifiers to the working electrode depending on the determination of the threshold determination section, and identifies the sample deposited on the biological sample measuring sensor from the output of the selected amplifier, and an output section that outputs a measurement value corresponding to the identified sample.



Methods and apparatus for detecting molecular interactions using FET arrays

Tue, 26 May 2015 08:00:00 EDT

Methods and apparatuses relating to large scale FET arrays for analyte detection and measurement are provided. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes.



Component finishing method and assembly

Tue, 26 May 2015 08:00:00 EDT

An example component finishing method includes immersing a surface of a component within a fluid during a finishing process. The method heats fluid near the surface during the finishing to create a convection current within the fluid that carries a byproduct of the finishing away from the surface.



Method of transferring graphene

Tue, 26 May 2015 08:00:00 EDT

A method of transferring graphene includes depositing graphene on a side of at least one metal substrate to provide a metal substrate-graphene layer, stacking a target substrate on a side of the metal substrate-graphene layer to provide a stacked structure in which a side of the target substrate faces the graphene layer, and exposing the stacked structure to an electrolysis bath to remove the metal substrate and transfer the graphene onto the side of the target substrate.



Electrolytic systems and methods for making metal halides and refining metals

Tue, 26 May 2015 08:00:00 EDT

Disclosed are electrochemical cells and methods for producing a halide of a non-alkali metal and for electrorefining the halide. The systems typically involve an electrochemical cell having a cathode structure configured for dissolving a hydrogen halide that forms the halide into a molten salt of the halogen and an alkali metal. Typically a direct current voltage is applied across the cathode and an anode that is fabricated with the non-alkali metal such that the halide of the non-alkali metal is formed adjacent the anode. Electrorefining cells and methods involve applying a direct current voltage across the anode where the halide of the non-alkali metal is formed and the cathode where the non-alkali metal is electro-deposited. In a representative embodiment the halogen is chlorine, the alkali metal is lithium and the non-alkali metal is uranium.



Disposable urea sensor and system for determining creatinine and urea nitrogen-to-creatinine ratio in a single device

Tue, 26 May 2015 08:00:00 EDT

A disposable urea sensor has a laminated body having a fluid sample inlet end and an electrical contact end, a fluid sample inlet, a substantially flat sample chamber in communication between the fluid sample inlet and a vent opening, the sample chamber being adapted to collect a fluid sample through the fluid sample inlet, a working electrode and a reference electrode within the sample chamber, and a reagent matrix disposed on the working electrode wherein the reagent matrix contains urease.



Apparatus for treating a fluid with microwave radiation

Tue, 19 May 2015 08:00:00 EDT

An apparatus for treating a flow of fluid with microwave radiation, the apparatus comprising: a vessel having a sidewall and opposed first and second end walls defining a substantially cylindrical chamber, the first end wall being disposed a predetermined distance d1 from the second end wall; a pipeline for flowing fluid through, the pipeline passing through the first end wall towards the second end wall of the vessel, the chamber and the pipeline being substantially co-axial and the pipeline being substantially transparent to microwave radiation; and a microwave radiation inlet in the side wall of the vessel for admitting microwave radiation of wavelength λ into the chamber, wherein the distance d1 is substantially equal to an integral multiple of λ/2 so that the chamber is a microwave resonator.



Microfluidic dielectrophoresis system

Tue, 19 May 2015 08:00:00 EDT

A microfluidic dielectrophoresis system includes: one supply device for a liquid medium having particles contained therein, N≧2 microfluidic, dielectrophoretically active channels, which are equipped with electrodes, lines for the fluidic connection of the supply device to the channels, for the connection of the channels to one another, and for the drainage of the medium and/or the particles from the channels, and valves for setting the flow direction of the medium in the lines, the dielectrophoretically active channels being situated and being connected by lines in such a way that they may be operated connected in parallel and in series by switching the valves in relation to the flow direction of the medium and the electrodes of the various channels are activatable independently of one another.



Electrochemical test sensor

Tue, 19 May 2015 08:00:00 EDT

An electrochemical test sensor for detecting the concentration of an analyte in a fluid sample. The electrochemical test sensor includes a housing that has a first end and a second opposing end. The housing includes an opening at the first end to receive a fluid test sample. An electrode assembly includes a substrate, a working electrode, a counter electrode and a reagent. The substrate has a first surface and an opposing second surface. The working electrode is disposed on the first surface of the substrate, and the counter electrode is disposed on the second surface of the substrate. The electrode assembly is positioned within the housing to define a reaction channel. The electrochemical test sensor may be used with a removable lancet mechanism or integrated within a lancet mechanism to form one integral unit.



Fuel cell fermentation monitor

Tue, 19 May 2015 08:00:00 EDT

Systems and methods for implementing an automated process which calculates the current specific gravity of a liquid by using the original gravity of a fermenting liquid and a measurement of the percent alcohol by volume.



Electric-field enhanced performance in catalysis and solid-state devices involving gases

Tue, 19 May 2015 08:00:00 EDT

Electrode configurations for electric-field enhanced performance in catalysis and solid-state devices involving gases are provided. According to an embodiment, electric-field electrodes can be incorporated in devices such as gas sensors and fuel cells to shape an electric field provided with respect to sensing electrodes for the gas sensors and surfaces of the fuel cells. The shaped electric fields can alter surface dynamics, system thermodynamics, reaction kinetics, and adsorption/desorption processes. In one embodiment, ring-shaped electric-field electrodes can be provided around sensing electrodes of a planar gas sensor.



Method for detection of cyanide in water

Tue, 19 May 2015 08:00:00 EDT

The method for detection of cyanide in water is a method for the detection of a highly toxic pollutant, cyanide, in water using ZnO2 nanoparticles synthesized locally by an elegant Pulsed Laser Ablation technique. ZnO2 nanoparticles having a median size of 4 nm are synthesized from pure zinc metal target under UV laser irradiation in a 1-10% H2O2 environment in deionized water. The synthesized ZnO2 nanoparticles are suspended in dimethyl formamide in the presence of Nafion, and then ultrasonicated to create a homogenous suspension, which is used to prepare a thin film of ZnO2 nanoparticles on a metal electrode. The electrode is used for cyanide detection.



Systems and methods for detection and quantification of analytes

Tue, 19 May 2015 08:00:00 EDT

Devices, systems, and methods for detecting molecules of interest within a collected sample are described herein. In certain embodiments, self-contained sample analysis systems are disclosed, which include a reusable reader component, a disposable cartridge component, and a disposable sample collection component. In some embodiments, the reader component communicates with a remote computing device for the digital transmission of test protocols and test results. In various disclosed embodiments, the systems, components, and methods are configured to identify the presence, absence, and/or quantity of particular nucleic acids, proteins, or other analytes of interest, for example, in order to test for the presence of one or more pathogens or contaminants in a sample.



Hydrogen/oxygen generator with D.C. servo integrated control

Tue, 19 May 2015 08:00:00 EDT

A hydrogen/oxygen generation system includes an electrolyzer cell, a servo integrated controller, a power control module, a voltage/current feedback device and a temperature feedback device. Servo closed loop control is used to efficiently and effectively produce hydrogen and oxygen gases.



Anodization and polish surface treatment

Tue, 19 May 2015 08:00:00 EDT

A metal surface treated to have a distinct cosmetic appearance such as an integral layer that is glossy may be used in electronic devices. The surface treatment may include polishing a metal surface, texturing the polished metal surface, polishing the textured surface, followed by anodizing the surface, and then polishing the anodized surface. The metal surface may also be dyed to impart a rich color to the surface.



Underpotential deposition-mediated layer-by-layer growth of thin films

Tue, 19 May 2015 08:00:00 EDT

A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves the use of underpotential deposition of a first element to mediate the growth of a second material by overpotential deposition. Deposition occurs between a potential positive to the bulk deposition potential for the mediating element where a full monolayer of mediating element forms, and a potential which is less than, or only slightly greater than, the bulk deposition potential of the material to be deposited. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis. This process is especially suitable for the formation of a catalytically active layer on core-shell particles for use in energy conversion devices such as fuel cells.



Copper foil for printed wiring board, method for producing said copper foil, resin substrate for printed wiring board and printed wiring board

Tue, 12 May 2015 08:00:00 EDT

A copper foil for a printed wiring board, the copper foil being characterized by having, on at least one surface thereof, a roughed layer of the copper foil in which an average diameter at a particle root (D1) corresponding to a distance of 10% of a particle length from the root, is 0.2 μm to 1.0 μm, and a ratio of the particle length (L1) to the average diameter at the particle root (D1) is 15 or less when L1/D1. A copper foil for a printed wiring board, wherein a sum of area covered by holes on an uneven and roughened surface of a resin is 20% or more at a surface of the resin formed by laminating the resin and a copper foil for a printed wiring having a roughened layer and then removing the copper layer by etching. An object of the present invention is to develop a copper foil for a semiconductor package board in which the aforementioned phenomenon of circuit erosion is avoided without deteriorating other properties of the copper foil. In particular, an object of the present invention is to provide a copper foil for a printed wiring board and a producing method thereof, wherein a roughened layer of the copper foil can be improved to enhance the adhesiveness between the copper foil and a resin.



Hydrogen sensing apparatus and method

Tue, 12 May 2015 08:00:00 EDT

An apparatus and methods are provided for the accurate determination of hydrogen content in fluid media at elevated temperatures. The apparatus consists of a proton conducting solid electrolyte in contact with an internal metal/hydrogen reference standard, in which the electrolyte and the reference material are in a chemically stable contact. The electrical signal generated is a function of the hydrogen concentration on the measuring side.



Method for proportioning nitrates and/or nitrites in a neutral medium

Tue, 12 May 2015 08:00:00 EDT

The present invention relates to a method for proportioning nitrate and/or nitrite ions in a solution using a copper electrode, said method being characterized in that it is carried out in constant potential mode and moreover in that it includes the steps of: i. applying a first potential to the copper electrode so as to reduce the copper oxides present on the surface of the metal copper electrode; ii. applying a second potential to the copper electrode so as to oxidize the metal copper formed in Step i into cupric ions; iii. applying a third potential to the copper electrode so as to reduce the copper oxides possibly formed in Step ii. Steps i through iii being carried out in a support electrolyte; and iv. proportioning the nitrate and/or nitrite ions of a solution to be analyzed by means of immersing the copper electrode, obtained in Step iii, in said solution to be analyzed while applying a fourth potential to the copper electrode so as to reduce the nitrate and/or nitrite ions, the support electrolyte of Steps i through iii, and the solution to be analyzed in Step iv, having a substantially neutral pH.



Process for producing reduced glutathione

Tue, 12 May 2015 08:00:00 EDT

Reduced glutathione is produced by a process for producing reduced glutathione by electroreduction of oxidized glutathione using a cathode cell and an anode cell separated from each other by a separating membrane, comprising using, as a solution in the cathode cell, an aqueous oxidized glutathione solution having a pH adjusted to higher than 3.0 and not more than 7.0 by adding a base, in which oxidized glutathione itself also acts as a conducting agent.



Electrolytic copper plating bath and method for electroplating using the electrolytic copper plating bath

Tue, 12 May 2015 08:00:00 EDT

For use for a circuit board where a through hole and a blind via hole co-exist, an electrolytic copper plating bath in which the covering power for the through hole and the plugging performance for the blind via hole are sufficient, and an electroplating method that uses the electrolytic copper plating bath, are disclosed. The electrolytic copper plating bath is mainly composed of a water-soluble copper salt, sulfuric acid and chloride ions. A polyamide polyamine, obtained on processing by heating of an epichlorohydrin modified product of a polycondensation product of diethylene triamine, adipic acid and ε-caprolactam, is contained in the bath as a leveler.



Composition for metal surface treatment, metal surface treatment method, and metal material

Tue, 12 May 2015 08:00:00 EDT

A metal material is contacted with a treatment solution containing zirconium and/or titanium compound, and a polyamine compound having a number average molecular weight from 150 to 500,000 and containing from 0.1 mmol to 17 mmol of primary and/or secondary amino group per 1 g of solid content and at least one siloxane unit. Concentration of zirconium and/or titanium compound in the metal surface treatment composition is from 10 ppm to 10,000 ppm with respect to the metal element, and mass ratio of the zirconium and/or titanium element is from 0.1 to 100 with respect to the polyamine compound. The metal material is washed with water after contacted by the treatment solution.



Wetting wave front control for reduced air entrapment during wafer entry into electroplating bath

Tue, 12 May 2015 08:00:00 EDT

Methods described herein manage wafer entry into an electrolyte so that air entrapment due to initial impact of the wafer and/or wafer holder with the electrolyte is reduced and the wafer is moved in such a way that an electrolyte wetting wave front is maintained throughout immersion of the wafer also minimizing air entrapment.



Supplementary intercooler for internal combustion engines

Tue, 12 May 2015 08:00:00 EDT

A supplementary intercooler cools engine air after it has passed through the turbocharger of a vehicle's turbocharged internal combustion engine, but before it enters the engine. The unit has an inlet for capturing the turbo's air charge and an outlet for routing the air charge to the engine after passing through the intercooler. A container stores water until it is needed and a water pump transfers water from the container to the unit. This loosened bond of water is then sprayed on capacitor plates under turbo pressure to be converted into hydrogen and injected into the air intake stream making it a totally “hydrogen-on-demand” intercooler.



Method for preparing nano-sheet array structure of group V-VI semiconductor

Tue, 05 May 2015 08:00:00 EDT

The object of the present invention is to provide a method for preparing a nano-sheet array structure of a Group V-VI semiconductor, comprising: (A) providing an electrolyte containing a hydrogen ion and disposing an auxiliary electrode and a working electrode in the electrolyte, wherein the working electrode comprises a Group V-VI semiconductor bulk; and (B) applying a redox reaction bias to the auxiliary electrode and the working electrode to form a nano-sheet array structure on the bulk.



Manufacturing method of resin molding mold, resin molding mold, resin molding mold set, manufacturing method of microchip substrate, and manufacturing method of microchip using said mold

Tue, 05 May 2015 08:00:00 EDT

A method for producing a resin molding die (13) for molding a first substrate (2) having a flow path (2b) and a through-hole (2a), wherein a base die (10) having a concave part (10b) corresponding to the flow path (2b) and a through-hole (10a) corresponding to through-hole (2a) and deeper than the concave part (10b) is prepared, the base die (10) is subjected to electroforming with a first material and is then subjected to electroforming with a second material which is different from the first material, and a protruding part for forming through-hole (10a) by removing the first material that was electrodeposited on through-hole (10a) is formed. The first material has a smaller electroforming stress than the second material, the first material exerts a higher adhesiveness with regard to the base die than the second material, and the second material is harder than the first material.



Low energy system and method of desalinating seawater

Tue, 05 May 2015 08:00:00 EDT

A low energy water treatment system and method is provided. The system has at least one electrodialysis device that produces partially treated water and a brine byproduct, a softener, and at least one electrodeionization device. The partially treated water stream can be softened by the softener to reduce the likelihood of scale formation and to reduce energy consumption in the electrodeionization device, which produces water having target properties. At least a portion of the energy used by the electrodeionization device can be generated by concentration differences between the brine and seawater streams introduced into compartments thereof. The brine stream can also be used to regenerate the softener.



High density sensor array without wells

Tue, 05 May 2015 08:00:00 EDT

Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.



Component production method

Tue, 05 May 2015 08:00:00 EDT

A method of producing a component includes the steps of: providing a workpiece generated by hot isostatic pressing a powder metal form; and electropolishing a surface of the workpiece to remove a substantially uniform surface layer of the workpiece to produce the component. Following the electropolishing step, the component has substantially the same shape as the workpiece produced by the hot isostatic pressing step.



Turbo titanium coating technology for broad application

Tue, 05 May 2015 08:00:00 EDT

A method for electroplating titanium alloy coating into plastic and carbon foam comprises the steps of activating the given specimen, deposition of electroless nickel and electroplating process of titanium alloy to the surface of the specimen. The electroplating process of electroplating titanium alloy coating includes a direct current method and a pulse plating method. The direct current method characterized by lager sized grains and the pulse plating method characterized by smaller sized grains. The advantages of proposed electroplating processes are: a) low cost, b) very broad applications and c) relatively low number of the process steps. Unique combination of physical, mechanical and chemical properties makes the electroplating methods of titanium coating an attractive technology for medicine, biotechnology, sports, defense, aeronautic, and auto industries.



High performance titania capacitor with a scalable processing method

Tue, 05 May 2015 08:00:00 EDT

A method of manufacturing an electrode includes: providing a metal foil; depositing titanium metal on the metal foil; masking the titanium metal surface to control the density of sites where anodization will occur; and anodizing the Ti/metal foil so as to produce a nano-porous titania dielectric on the surface of the anode. The process may be on only one surface of the metal foil or on both sides simultaneously. The metal foil may be an aluminum foil. The porous titania dielectric may comprise titania nanotubes. An electrode structure may be fabricated using a linear process tool for reel-to-reel processing of a metal foil, the tool may include: a titanium deposition station for depositing a uniform thin film of titanium on the surface of the metal foil; a masking station for modifying the titanium surface to control the density of sites where anodization will occur; and an anodization station for transforming the Ti thin film into a porous titania dielectric film.



Hydrometalurgical process and apparatus for recovering metals from waste material

Tue, 05 May 2015 08:00:00 EDT

The invention is directed to a process and apparatus for recovering metals from bottom ash from incineration plants, such as municipal waste incineration plants. The process includes directing a feed containing ash into an oxidizing unit, wherein at least part of the metals is oxidized in the presence of one or more acids and at least one oxygen donor, thus producing a stream comprising metal ions. From this stream the metals of interest are selected and converted into metallic form.



Method for manufacturing surface acoustic wave apparatus

Tue, 05 May 2015 08:00:00 EDT

Provided is a method for manufacturing a surface acoustic wave apparatus that can reduce degradation of electric characteristics and also reduce the number of manufacturing processes. The method for manufacturing a surface acoustic wave apparatus includes the steps of: forming an IDT electrode on an upper surface of a piezoelectric substrate, forming a frame member surrounding a formation area in which the IDT electrode is formed on the piezoelectric substrate, and mounting a film-shaped lid member on the upper surface of the frame member so as to be joined to the frame member so that a protective cover, used for covering the formation area and for providing a tightly-closed space between it and the formation area, is formed.



Upgrading of titaniferous material

Tue, 28 Apr 2015 08:00:00 EDT

A method of upgrading a titaniferous material includes nitriding and reducing a titaniferous material which includes TiO2 and Fe oxides in the presence of nitrogen and carbon to convert the TiO2 to TiN and to reduce most of the Fe oxides to Fe. The Fe is oxidized in preference to the TiN to form Fe2+ ions, whereafter the Fe2+ ions are removed to produce an upgraded low-Fe TiN bearing material.



Plating method of circuit substrate, production method of plated circuit substrate, and silver etching liquid

Tue, 28 Apr 2015 08:00:00 EDT

Provided is a plating method of a circuit substrate comprising a conductive pattern in which a metal layer containing at least silver and copper is exposed on an outer surface. The plating method comprises: step (A) of treating the circuit substrate with a first liquid agent containing an oxidizing agent; step (B) of treating the circuit substrate after the step (A) with a second liquid agent which dissolves copper oxide, and thereby removing copper oxide from the conductive pattern's surface; step (C) of treating the circuit substrate after the step (B) with a third liquid agent whose rate of dissolving silver oxide (I) at 25° C. is 1000 times or more faster than its rate of dissolving copper (0) at 25° C., and thereby removing silver oxide from the conductive pattern's surface; and step (D) of performing electroless plating on the conductive pattern of the circuit substrate after the step (C).



Determining blood glucose in a small volume sample receiving cavity and in a short time period

Tue, 28 Apr 2015 08:00:00 EDT

The concentration of glucose in a blood sample is determined by methods utilizing test strips having a sample receiving cavity having a volume from about 0.3 μl to less than 1 μl and determining the glucose concentration within a time period from about 3.5 seconds to about 8 seconds.



Method for determining the concentration of an analyte in a liquid sample using small volume samples and fast test times

Tue, 28 Apr 2015 08:00:00 EDT

Analytes in a liquid sample are determined by methods utilizing sample volumes from about 0.3 μl to less than 1 μl and test times from about 3.5 to about 6 seconds after detection of the sample. The methods are preferably performed using small test strips including a sample receiving chamber filled with the sample by capillary action.



Process for recovering valuable metals from precious metal smelting slag

Tue, 28 Apr 2015 08:00:00 EDT

The present invention provides a process for recovering valuable metals from precious metal smelting slag, comprising: smelting the precious metal smelting slag and a flux in a top-blown rotary furnace to produce a lead-bismuth alloy, wherein the precious metal smelting slag comprises Au, Ag, Bi and Pb; electrolyzing the lead-bismuth alloy at a current density ranging from 60 to 110 A/m2 to obtain lead cathode and lead anode slime; refining the lead anode slime to produce bismuth and silver-zinc crust, and extracting gold and silver separately from the silver-zinc crust. Through utilizing a top-blown rotary furnace as the smelting apparatus and adjusting the ratio of the flux, the present invention enriches the valuable metals gold, silver, bismuth, lead or the like to lead-bismuth alloy, ensures lower contents of gold, silver, bismuth and lead in the reducing slag and thereby increases the comprehensive recovery rates of gold, silver, bismuth and lead from the precious metal smelting slag.



Electrodeposition of elemental zirconium

Tue, 28 Apr 2015 08:00:00 EDT

The present invention relates to the electrodeposition of elemental zirconium at a temperature of less than 100° C. from a mixture of a Lewis acid, a zirconium salt and an ionic liquid.



Systems and methods for reducing overhang on electroplated surfaces of printed circuit boards

Tue, 28 Apr 2015 08:00:00 EDT

Systems and methods for reducing overhang on electroplated surfaces of printed circuit boards are described. One such method includes applying a first resist layer on a substrate having a first copper layer, applying a first image to the first resist layer, developing the first resist layer in accordance with the first image, applying a second copper layer on the first copper layer, electroplating a first metallic layer on the second copper layer, removing the first resist layer, etching a portion of the first copper layer, removing the first metallic layer, depositing a third copper layer on a surface of the assembly, applying a second resist layer on the third copper layer, applying a second image to the second resist layer, developing the second resist layer in accordance with the second image, electroplating a preselected metal layer on the third copper layer, removing the second resist layer, and etching a portion of the third copper layer.



Method for fabricating a heat sink, and a heat sink

Tue, 28 Apr 2015 08:00:00 EDT

A method for fabricating a heat sink may include: providing a carbon fiber fabric having carbon fibers and openings, the openings leading from a first side to a second side of the fabric; and electroplating the fabric with metal, wherein metal is deposited with a higher rate at the first side than at the second side of the fabric. Another method for fabricating a heat sink may include: providing a carbon metal composite having metal-coated carbon fibers and openings, the openings leading from a first side to a second side of the carbon metal composite; disposing the composite over a semiconductor element such that the first side of the composite faces the semiconductor element; and bonding the composite to the semiconductor element by means of an electroplating process, wherein metal electrolyte is supplied to an interface between the carbon metal composite and the semiconductor element via the openings.



Electro chemical deposition and replenishment apparatus

Tue, 28 Apr 2015 08:00:00 EDT

A process electrolyte replenishment module adapted to replenish ions in a process electrolyte in a substrate electrochemical deposition apparatus having a first anode and a first cathode, the replenishment module having a second anode. A process electrolyte recirculation compartment is disposed in the frame configured so that the process electrolyte is recirculating between the replenishment module and the deposition apparatus. An anode compartment is coupled to the process electrolyte recirculation compartment having the second anode, that is a soluble anode, for immersion in a secondary anolyte, and having a first ion exchange membrane being a cationic member separating the secondary anolyte from the process electrolyte. A cathode compartment is provided in the frame coupled to the process electrolyte recirculation compartment having a second cathode for immersion in a secondary catholyte, and having a second ion exchange membrane being a monovalent selective membrane separating the secondary catholyte from the process electrolyte.



Integrated sample acquisition and analyte measurement device

Tue, 28 Apr 2015 08:00:00 EDT

A region of skin, other than the fingertips, is stimulated. After stimulation, an opening is created in the skin (e.g., by lancing the skin) to cause a flow of body fluid from the region. At least a portion of this body fluid is transported to a testing device where the concentration of analyte (e.g., glucose) in the body fluid is then determined. It is found that the stimulation of the skin provides results that are generally closer to the results of measurements from the fingertips, the traditional site for obtaining body fluid for analyte testing.



Method for producing high-purity lanthanum, high-purity lanthanum, sputtering target formed from high-purity lanthanum, and metal gate film having highy-purity lanthanum as main component

Tue, 21 Apr 2015 08:00:00 EDT

The present invention addresses the problem of providing a technique capable of efficiently and stably providing a method for producing high-purity lanthanum, the method characterized in that: a crude lanthanum oxide starting material having a purity of 2N-3N, excluding gas components, is used; the material is subjected to molten salt electrolysis at a bath temperature of 450-700° C. to produce lanthanum crystals; the lanthanum crystals are subsequently desalted: and electron beam melting is then performed to remove volatile substances. The present invention also addresses the problem of providing a technique capable of efficiently and stably providing high-purity lanthanum, high-purity lanthanum itself, a sputtering target formed from high-purity material lanthanum; and a thin film for metal gates that has high purity lanthanum as the main component.



Diagnostic strip coding system and related methods of use

Tue, 21 Apr 2015 08:00:00 EDT

An auto-calibration system for diagnostic test strips is described for presenting data individually carried on each test strip readable by a diagnostic meter. The carried data may include an embedded code relating to data particular to that individual strip. The data is presented so at to be read by a meter associated with the diagnostic test strip in order to avoid manually inputting the information.



Method of making foraminous microstructures

Tue, 21 Apr 2015 08:00:00 EDT

A foraminous microstructure or film that has photonic or plasmonic properties is made by forming a structure or film composed of at least two constituent materials so that the compositional ratio of the constituent materials varies in a depth direction of the structure, and then removing one of the materials from the structure.