Subscribe: Untitled
http://www.freepatentsonline.com/rssfeed/rssapp060.xml
Added By: Feedage Forager Feedage Grade B rated
Language: English
Tags:
air  assembly  combustor  compressor  engine assembly  engine core  engine  exhaust  fuel  gas  includes  turbine  valve 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: Untitled

Untitled





 



GEOTHERMAL POWER PLANT

Thu, 25 Aug 2016 08:00:00 EDT

A plant for exploiting geothermal energy by circulating water or another fluid through a non-porous geological formation at a substantial depth below the earth surface, comprising multiple heat absorbing/production holes penetrating the said formation, with a total length of several kilometers and spaced more than 50 m apart. The production holes are connected to the surface by one single combined supply and return hole in which upward and downward flow is separated by a pipe comprising an insulating material and a seal. At the given positions of the common supply and return hole manifold zone designs connect the hole to the multiple production holes. The supply and return holes and production holes are closed circuits for transport of a fluid such as water through the said formation. A method for designing and establishing the plant is also disclosed.



COMBUSTOR AFT MOUNT ASSEMBLY

Thu, 25 Aug 2016 08:00:00 EDT

The present application provides a gas turbine engine. The gas turbine engine may include a compressor discharge casing, a number of combustors configured in an annular array, and a number of aft mounting assemblies. An aft mounting assembly mounts a combustor to an inner diameter of the compressor discharge casing.



WAVE ROTORS WITH TEMPERATURE CONTROL FEATURES

Thu, 25 Aug 2016 08:00:00 EDT

A wave rotor combustor includes an inlet plate, an outlet plate, and a rotor drum assembly positioned therebetween. The inlet plate is formed to include an inlet port arranged to receive a mixture of fuel and air. The outlet plate is formed to include an outlet port arranged to receive combusted gasses flowing out of the wave rotor combustor. The rotor drum assembly is arranged to rotate relative to the inlet and outlet plates and to combust the fuel and air mixture as part of a combustion process. Conditioned air is passed through the wave rotor combustor to regulate a temperature distribution of the wave rotor combustor.



CIRCUMFERENTIALLY AND AXIALLY STAGED ANNULAR COMBUSTOR FOR GAS TURBINE ENGINE

Thu, 25 Aug 2016 08:00:00 EDT

A combustor section for a gas turbine engine includes an outer wall assembly and an inner wall assembly inboard of the outer wall assembly to define an annular combustion chamber therebetween. A forward fuel injection system is in communication with the combustion chamber. A downstream fuel injection system is in communication with the combustion chamber through the outer wall assembly and a swirl mixer system in communication with the combustion chamber through the inner wall assembly.



COMBUSTION STAGING SYSTEM

Thu, 25 Aug 2016 08:00:00 EDT

A combustion staging system for fuel injectors of a multi-stage combustor of a gas turbine engine has pilot and mains fuel manifolds distributing fuel to the injectors. A splitting unit splits a fuel flow and sends portions of the flow to pilot and mains fuel manifolds to perform staging control of the combustor. The splitting unit can deselect the mains manifold so that there is no flow into the combustor from the mains manifold. A cooling flow recirculation line provides a cooling flow of fuel to the mains manifold when that manifold is deselected so that the mains manifold remains primed with relatively cool fuel. A return section collects the cooling flow from the mains manifold. One or more fuel pressure sensors detect pressure of the cooling flow on the recirculation line. A control arrangement closes off the recirculation line when the pressure sensor(s) indicates failure of the cooling flow.



ANGLED MAIN MIXER FOR AXIALLY CONTROLLED STOICHIOMETRY COMBUSTOR

Thu, 25 Aug 2016 08:00:00 EDT

A combustor is provided. The combustor may comprise an axial fuel delivery system, and a radial fuel delivery system aft of the axial fuel delivery system. The radial fuel delivery system may be configured to direct fuel at least partially towards the axial fuel delivery system. A radial fuel delivery system is also provided. The system may comprise a combustor including a combustor liner, a mixer coupled to the combustor liner, and a nozzle disposed within the mixer, wherein the mixer and the nozzle are configured to direct fuel in a direction at least partially forward.



COOLING TECHNOLOGY FOR THE FUEL NOZZLE

Thu, 25 Aug 2016 08:00:00 EDT

A mixer assembly for a gas turbine engine is provided, including a main mixer, and a pilot mixer having an annular housing. The pilot mixer can further include features to cool portions of the annular housing, such as a radial edge of the annular housing.



GAS TURBINE ENGINE QUENCH PATTERN FOR GAS TURBINE ENGINE COMBUSTOR

Thu, 25 Aug 2016 08:00:00 EDT

A combustor for a turbine engine includes an inner liner panel with a multiple of inner dilution passages. The multiple of dilution passages includes a repeating pattern of a first major inner air passage, a minor inner air passage, and a second major inner air passage. A combustor for a turbine engine includes an outer liner panel with a multiple of outer dilution passages. The multiple of outer dilution passages includes a repeating pattern of a first major outer air passage, a first minor outer air passage, a second major outer air passage, and a second minor outer air passage.



SWIRLER ASSEMBLY FOR A TURBINE ENGINE

Thu, 25 Aug 2016 08:00:00 EDT

An assembly for a turbine engine includes a combustor bulkhead, a swirler and a mounting strap. The swirler includes a mounting lug and a tubular swirler body that extends along an axis. The mounting lug projects radially out from the swirler body. The mounting strap is attached to the combustor bulkhead. The mounting lug is axially restrained between the combustor bulkhead and the mounting strap.



COMBUSTOR PANEL WITH MULTIPLE ATTACHMENTS

Thu, 25 Aug 2016 08:00:00 EDT

A liner panel for a combustor of a gas turbine engine is provided that includes a first attachment and a second attachment that extends from a cold side of the liner panel. The first attachment is different than the second attachment. A combustor of a gas turbine engine is provided that includes an inner combustor wall assembly with an inner support shell and a multiple of inner liner panels. At least one of the multiple of inner liner panels includes a first inner attachment to the inner support shell and a second inner attachment to the inner support shell. The first inner attachment is different than, and upstream of, the second inner attachment. An outer combustor wall assembly is spaced from the inner combustor wall assembly to define an annular combustion cavity therebetween.



IGNITER POSITION FOR A COMBUSTOR OF A GAS TURBINE ENGINE

Thu, 25 Aug 2016 08:00:00 EDT

The present disclosure relates combustor configurations for a gas turbine engine. In one embodiment, a combustor includes a combustor shell enclosing a first area of free space, and an igniter for the combustor shell, the igniter including a distal end. The combustor also includes one or more elements configured to retain the igniter and to interface with the combustor shell, wherein the igniter is retained that the distal end of the igniter is recessed from the first area of free space. According to another embodiment, a combustor configuration may include one or more elements configured to retain an igniter and interface with the combustor shell, wherein the one or more elements define a boundary between the combustor shell and one or more elements, and wherein the igniter is retained within the one or more elements such that the distal end of the igniter is recessed from the boundary.



HYDRAULIC CONTROL APPARATUS

Thu, 25 Aug 2016 08:00:00 EDT

A check valve includes a check valve body and a check valve member. The check valve body includes a check valve outlet port and a check valve oil path. The check valve member is movable in the check valve oil path to move in a first direction in which the check valve member is pushed by hydraulic fluid due to hydraulic pressure from a hydraulic pump. A switching valve includes a switching valve body. The switching valve body includes a switching valve inlet port connected to the check valve outlet port and a receiving surface facing the check valve outlet port. The check valve member contacts the receiving surface after the hydraulic pump starts providing hydraulic pressure. The switching valve body is supported by a valve body via a first O-ring and a second O-ring such that the switching valve body is movable in the first direction.



HYDRAULIC CIRCUIT FOR POWER TRANSMISSION DEVICE OF VEHICLE

Thu, 25 Aug 2016 08:00:00 EDT

A fitting clearance of a relief valve functions as an air bleeding orifice. When a discharge pressure reaches a relief pressure so that the relief valve turns into a relief state, a spool is moved so as to limit flow-out of hydraulic oil through the fitting clearance. As a result, generation of air trapping is suppressed by air bleeding function of the relief valve in a closed state. Air in a discharge oil passage is discharged quickly in the initial period of the startup of an electric oil pump, thereby improving rise-up of discharge pressure. During normal pump operation in which the relief valve is held in a relief state, pressure loss due to flow out of the hydraulic oil from the fitting clearance is suppressed and consequently, an electric oil pump having substantially the same discharge performance as conventionally can be used.



Hydraulic Pressure Circuit and Working Machine

Thu, 25 Aug 2016 08:00:00 EDT

The hydraulic circuit has: main pumps driven by an engine; a boom cylinder including a piston operating by hydraulic oil supplied from the main pumps, one chamber and the other chamber respectively partitioned and formed by the piston; an accumulator accumulating pressure of the hydraulic oil extruded from one chamber of the boom cylinder; and an assist pump motor suctioning the hydraulic oil from the accumulator when pressure continues to be accumulated in the accumulator and the accumulator pressure rises.



PUMP WITH QUICK DISCHARGE FUNCTION

Thu, 25 Aug 2016 08:00:00 EDT

A pump includes a chamber defined by a piston movable in a body comprising an intake opening able to communicate with the chamber and a first non-return member authorizing passage of fluid from the opening toward the chamber, and prohibiting the passage from the chamber toward the opening. An expulsion opening is between the chamber and a duct, and a second non-return member authorizes passage of fluid from the chamber toward the duct, and prohibits passage from the duct toward the chamber. The body includes a discharge opening communicating with the duct and able to communicate with the opening, and a third non-return member movable between an open position, in which the duct communicates with the opening, and a closed position prohibiting the passage of fluid between the duct and the opening. The pump includes a member to move the third non-return member.



Enclosed Solar Chimney Power Plan

Thu, 25 Aug 2016 08:00:00 EDT

An enclosed solar chimney power plant is formed by the way of its solar collector (greenhouse) construction. The enclosed solar collector (greenhouse) has a transparent roof and it is surrounded by a peripheral vertical wall. On this peripheral vertical wall there are circular openings through which the incoming air stream is entering, replacing the warm air that is escaping continuously through the solar chimney. The incoming air stream in each opening is forcing to rotate its corresponding air turbine and its engaged electric generator generating electricity. In each opening there is an electromechanical air blocking system which can release or block the entering air stream and may also connect or disconnect the electric generator to the grid.



Apparatus And Methods For Exhaust Gas Recirculation For An Internal Combustion Engine Utilizing At Least Two Hydrocarbon Fuels

Thu, 25 Aug 2016 08:00:00 EDT

A method of operating an internal combustion engine having a plurality of cylinders, the method comprising: operating the engine with at least one of the cylinders of the engine as a dedicated exhaust gas recirculation (EGR) cylinder; mixing exhaust gas expelled from the dedicate EGR cylinder with air in an intake system to provide a mixture of exhaust gas and air; providing a first hydrocarbon fuel and a second hydrocarbon fuel; introducing a charge comprising the first hydrocarbon fuel, the second hydrocarbon fuel and the mixture of exhaust gas and air to the dedicated EGR cylinder; igniting the charge in the dedicated EGR cylinder; expelling exhaust gas from the dedicated EGR cylinder; and recirculating the exhaust gas to the intake system of the engine.



High Thermal Efficiency Six Stroke Internal Combustion Engine with Heat Recovery

Thu, 25 Aug 2016 08:00:00 EDT

A six stroke high thermal efficiency engine and a method for operating such an engine are disclosed. Oxygen or oxygen-enriched air is used as the oxidizer, heat is recovered from the two exhaust strokes, superheated steam is used in the second power stroke, and high levels of exhaust gas from stroke four are recirculated. Lean burn combustion is utilized to produce an oxygen rich exhaust which results in very low levels of particulates, unburned hydrocarbons, and carbon monoxide. Due to high thermal efficiency, carbon dioxide emissions are reduced per unit of power output. Use of oxygen or oxygen-enriched air as the oxidizer produces an exhaust containing very low levels of nitrogen oxides. The engine is insulated to conserve heat, resulting in reduced engine noise. An engine with high thermal efficiency, quiet operation, and low emissions is the result.



Improved External Heat Engine Device

Thu, 25 Aug 2016 08:00:00 EDT

An external-heat engine device working on a Rankine cycle, and preferably an organic Rankine cycle. The external-heat engine, which is designed to give operational advantages, includes a cylinder block, a top cover and a bottom tray with sealing surfaces arranged to be joined together and to rest against complementarily fitting covers, each sealing surface resting sealingly against only one opposite sealing surface.



METHODS AND SYSTEMS FOR AN INTAKE OXYGEN SENSOR

Thu, 25 Aug 2016 08:00:00 EDT

Methods and systems are provided for adjusting a reference voltage for an intake manifold oxygen sensor based on ingestion of hydrocarbons from a fuel system canister and/or an engine crankcase. During conditions when purge or crankcase ventilation hydrocarbons are ingested in the intake aircharge, the intake oxygen sensor is transitioned from operating at a lower reference voltage to a higher reference voltage where the effects of the ingested hydrocarbons on the sensor output are nullified. An EGR dilution of the intake aircharge is estimated based on the output of the sensor at the higher reference voltage while an amount of hydrocarbons ingested is estimated based on a difference between sensor outputs at the higher and lower reference voltages.



METHODS AND SYSTEMS FOR AN OXYGEN SENSOR

Thu, 25 Aug 2016 08:00:00 EDT

Methods and systems are provided for accurately learning the zero point of an intake gas oxygen sensor during selected engine no-fueling conditions. The learned zero point is used to infer EGR flow and accordingly adjust EGR valve control. In addition, EGR valve leakage is diagnosed based on the zero point learned during a DFSO adaptation relative to a zero point learned during an idle adaptation.



EXHAUST AFTERTREATMENT SYSTEM

Thu, 25 Aug 2016 08:00:00 EDT

The present invention is concerned with an exhaust treatment system and a process for the abatement of noxious pollutants being emitted from a gasoline vehicle. In particular, the present invention is directed to an exhaust system which comprises one or more three-way catalysts (TWC) in a close-coupled (cc) position and an HC-trap/SCR-device in an underfloor (uf) region of the car.



CONTROL DEVICE OF VEHICLE

Thu, 25 Aug 2016 08:00:00 EDT

The invention relates to a control device of a vehicle provided with a multi-cylinder internal combustion engine comprising a catalyst in an exhaust passage. When a state of an ignition switch has been changed from an on-state to an off-state and a rotation of the engine has stopped, the control device causes a fuel injector to inject fuel into a combustion chamber of a particular cylinder in which an intake valve is closed and an exhaust valve is open and causes an ignition device to ignite the fuel.



CONTROL DEVICE FOR SUPERCHARGED ENGINE

Thu, 25 Aug 2016 08:00:00 EDT

In a multiple cylinder supercharged engine, when reduced cylinder operation is executed, a throttle, which is located downstream of a compressor driven by a turbine provided in an exhaust passage, through which exhaust gas of a cylinder group flows, is operated to a fully closed state, wherein the reduced cylinder operation is applied to the cylinder group. A fuel injection amount of at least one cylinder included in the cylinder group is made smaller than a fuel injection amount of a cylinder included in another cylinder group, and this at least one cylinder is operated, in order to increase rotational speed of the compressor, so that a value of pressure of an upstream side of the throttle is controlled to a value, which is equal to or larger than a value of pressure of a downstream side of the throttle.



AUTOMATIC CONTROL OF TURBINE BLADE TEMPERATURE DURING GAS TURBINE ENGINE OPERATION

Thu, 25 Aug 2016 08:00:00 EDT

A method of controlling an airfoil component temperature distribution includes the steps of detecting an airfoil component temperature, comparing the detected airfoil component temperature to a desired airfoil component temperature profile, and controlling a fuel flow in response to the comparing step to maintain the airfoil component temperature within the desired airfoil component temperature profile.



COMPOUND ENGINE ASSEMBLY WITH CONFINED FIRE ZONE

Thu, 25 Aug 2016 08:00:00 EDT

A compound engine assembly with an engine core including at least one internal combustion engine, a turbine section including a turbine shaft in driving engagement with the engine shaft, and a compressor, and a firewall. The compressor is located on one side of the firewall, and the turbine section and the engine core are located on the other side. The assembly may include a gearbox module with the turbine section and the engine core located on a same side of the gearbox module casing and the compressor located on the opposite side of the gearbox module casing, and with the firewall extending from the gearbox module casing. One or more rotatable accessory may be located on a same side of the firewall as the compressor. A method of reducing fire hazard in a compound engine assembly is also discussed.



FUEL SUPPLY SYSTEM FOR A GAS TURBINE COMBUSTOR

Thu, 25 Aug 2016 08:00:00 EDT

A fuel supply system for a gas turbine combustor includes a fuel distribution manifold. A first fuel circuit extends from the fuel distribution manifold in a first circumferential direction around an outer surface of the outer casing and provides for fluid communication from the fuel distribution manifold, through the outer casing and to at least one fuel injector disposed within the outer casing. A second fuel circuit extends from the fuel distribution manifold in a second circumferential direction around the outer surface of the outer casing. The second fuel circuit provides for fluid communication from the fuel distribution manifold, through the outer casing and to at least one fuel injector within the outer casing. In particular configurations, the fuel supply system includes a shield that surrounds at least a portion of the outer casing and at least partially encases the first fuel circuit and the second fuel circuit.



Gas-turbine engine with oil cooler in the engine cowling

Thu, 25 Aug 2016 08:00:00 EDT

An engine cowling of an aircraft gas-turbine engine with a core engine and a bypass duct surrounding the latter, with a front cowling enclosing the bypass duct and a rear cowling movable in the axial direction, and with stator vanes arranged in the bypass duct, where recesses for removing fluid from the bypass duct are provided in the area of the stator vanes on the inside of the front cowling, where the fluid discharged through the recesses is routed by means of flow ducts through the front cowling, brought into contact with at least one heat exchanger, and subsequently discharged to the environment.



FLUID INTAKE

Thu, 25 Aug 2016 08:00:00 EDT

A fluid intake including first and second ducts and a particle separation spinner defining an interface between the first and second ducts is disclosed. Spinner includes flow passages passing from first duct side of the spinner to second duct side of the spinner and splitter bodies separating the flow passages. Flow passages and splitter bodies are arranged in thread-like screw manner about spinner. In use, the spinner is spun about an axis of rotation, axis and direction of rotation being such that, from static frame of reference with respect to first duct, splitter bodies and flow passages have a component of movement towards a main travel direction of a fluid flow incident towards spinner from first duct. Splitter bodies are arranged such that they oblige fluid in the fluid flow to follow a convoluted path if it is to pass from first duct to second duct via the flow passages.



COMPRESSION MOLDED FIBER REINFORCED FAN CASE ICE PANEL

Thu, 25 Aug 2016 08:00:00 EDT

An ice panel for a fan case of a gas turbine engine is disclosed. The ice panel may comprise a facesheet located on an inner surface of the fan case and it may comprise a chopped prepreg tape that is cured. The chopped prepreg tape may comprise randomly oriented chips of fibers impregnated with a resin matrix.



COMPOUND ENGINE ASSEMBLY WITH INLET LIP ANTI-ICING

Thu, 25 Aug 2016 08:00:00 EDT

A compound engine assembly with an inlet duct having an inlet surrounded by an inlet lip including at least one conduit extending therethrough, a compressor, an engine core including at least one internal combustion engine, a turbine section having a turbine shaft in driving engagement with the engine shaft, and an exhaust conduit providing a fluid communication between the outlet of the turbine section and the conduit(s) of the inlet lip. An exhaust duct and ant exhaust conduit providing a fluid communication between the outlet of the turbine section and the exhaust duct may also be provided. The internal combustion engine(s) may be rotary engine(s). A method of driving a rotatable load of an aircraft is also discussed.



SELF-COOLED GAS BOTTLE

Thu, 25 Aug 2016 08:00:00 EDT

A gas bottle assembly may be provided for a gas turbine engine system. The gas bottle system may include a gas bottle, a regulator cavity, a conductor coil, and an insulating jacket. The gas bottle may be configured to store and selectively release pressurized fluid. The regulator cavity and conductor coil may be in fluid connection with the gas bottle. The conductor coil may be disposed around at least a portion of the gas bottle. The insulating jacket may disposed around at least a portion of the gas bottle, pressure regulator, and the conductor coil. The conductor coil may be configured to maintain or decrease a temperature of the gas bottle while the insulting jacket resists heat from other portions of the engine system.



Two-Shaft Gas Turbine, and Control System and Control Method of the Gas Turbine

Thu, 25 Aug 2016 08:00:00 EDT

A two-shaft gas turbine of the present invention, in which a mass flow of an air into a compressor is regulated by controlling a set angle of an inlet guide vane (IGV) on an air intake side of the compressor, comprises, as a device to control the set angle of the IGV, a first controller to control the set angle of the IGV based on a corrected speed of the gas generator shaft during low speed rotation of the gas generator shaft, the corrected speed having been corrected according to an ambient temperature; a second controller to control the set angle of the IGV to maintain a constant actual speed of the gas generator shaft during high speed rotation of the gas generator shaft; and an ambient temperature correction part to increase the actual speed maintained constant by the second controller if the ambient temperature is equal to or more than a threshold value.



COMPOUND ENGINE ASSEMBLY WITH MOUNT CAGE

Thu, 25 Aug 2016 08:00:00 EDT

A compound engine assembly with an engine core including at least one internal combustion engine, a turbine section, and a compressor having an outlet in fluid communication with an inlet of the engine core. A casing is connected to the turbine section, compressor and engine core. A mount cage is connected to mounts attached to the casing between the compressor and a hot zone including the turbine section and exhaust pipe(s). The struts are separated from the hot zone by at least one firewall. The mount cage may include a plurality of struts all extending from the mounts away from the turbine section and engine core. The casing may be a gearbox module casing through which the turbine shaft in engaged with the engine shaft. The mount cage may be completely contained within an axial space with the turbine section and exhaust pipe(s) being located outside of the axial space.



COMPOUND ENGINE ASSEMBLY WITH MOUNT CAGE

Thu, 25 Aug 2016 08:00:00 EDT

A compound engine assembly with an engine core including at least one internal combustion engine, a turbine section, and a compressor having an outlet in fluid communication with an inlet of the engine core. A casing is connected to the turbine section, the compressor and the engine core. A mount cage is connected to mounts attached to the casing between the compressor and a hot zone including the turbine section and the engine core. The mount cage includes a plurality of struts all extending from the mounts away from the turbine section and engine core. The casing may be a gearbox module casing through which the turbine shaft in engaged with the engine shaft. The mount cage may be completely contained within an axial space with the turbine section and engine core being located outside of the axial space.



COMPOUND ENGINE ASSEMBLY WITH COAXIAL COMPRESSOR AND OFFSET TURBINE SECTION

Thu, 25 Aug 2016 08:00:00 EDT

A compound engine assembly having an engine core including at least one internal combustion engine in driving engagement with an engine shaft, a compressor having an outlet in fluid communication with an inlet of the engine core and including at least one rotor rotatable about an axis coaxial with the engine shaft, the engine shaft in driving engagement with the compressor rotor, and a turbine section having an inlet in fluid communication with an outlet of the engine core and including at least one rotor engaged on a rotatable turbine shaft, the turbine shaft configured to compound power with the engine shaft. The turbine and engine shafts are parallel to and radially offset from one another, and the turbine shaft and the axis of the compressor rotor are parallel to and radially offset from one another. A method of driving a rotatable load of an aircraft is also discussed.



COMPOUND ENGINE ASSEMBLY WITH CANTILEVERED COMPRESSOR AND TURBINE

Thu, 25 Aug 2016 08:00:00 EDT

A compound engine assembly with an engine core including at least one internal combustion engine, a compressor, and a turbine section where the turbine shaft is configured to compound power with the engine shaft. The turbine section may include a first stage turbine and a second stage turbine. The turbine shaft is rotationally supported by a plurality of bearings all located on a same side of the compressor rotor(s) and all located on a same side of the turbine rotor(s), for example all located between the compressor rotor(s) and the turbine rotor(s), such that the compressor rotor(s) and the turbine rotor(s) are cantilevered. A method of driving a rotatable load of an aircraft is also discussed.



COMPOUND ENGINE ASSEMBLY WITH OFFSET TURBINE SHAFT, ENGINE SHAFT AND INLET DUCT

Thu, 25 Aug 2016 08:00:00 EDT

A compound engine assembly with an inlet duct, a compressor, an engine core including at least one internal combustion engine, and a turbine section including a turbine shaft configured to compound power with the engine shaft. The turbine section may include a first stage turbine and a second stage turbine. The turbine shaft and the engine shaft are parallel to each other. The turbine shaft, the engine shaft and at least part of the inlet duct are all radially offset from one another. A method of driving a rotatable load of an aircraft is also discussed.



COMPOUND ENGINE ASSEMBLY WITH MODULATED FLOW

Thu, 25 Aug 2016 08:00:00 EDT

A compound engine assembly including a compressor, an engine core including at least one rotary internal combustion engine and having an inlet in fluid communication with an outlet of the compressor, a turbine section having an inlet in fluid communication with an outlet of the engine core and configured to compound power with the engine core, and an air conduit having at least one heat exchanger extending thereacross. An outer wall of the air conduit has a plurality of openings defined therethrough downstream of the heat exchanger(s), each selectively closable by a pivotable flap movable between a retracted position where the opening is obstructed and an extended position away from the opening. Each opening defines a fluid communication between the air conduit and the ambient air when the respective flap is in the extended position. A method of directing flow through a compound engine assembly is also discussed.



EXHAUST GAS-TURBOCHARGED INTERNAL COMBUSTION ENGINE COMPRISING A RADIAL COMPRESSOR WITH GUIDE DEVICE ARRANGED IN THE DIFFUSER, AND METHOD FOR OPERATING AN INTERNAL COMBUSTION ENGINE OF SAID TYPE

Thu, 25 Aug 2016 08:00:00 EDT

Methods and systems are provided for an adjustable diffuser of a turbocharger compressor. In one example, a compressor includes a diffuser formed in a compressor housing downstream of an impeller of the compressor, the diffuser including guide blades mounted on a rotatable annular support of the diffuser. Further, an engine controller may adjust rotation of the annular support based on one or more engine operating conditions.



METHOD OF CONTROLLING WASTEGATE FLOW USING PORT SIDE WALL CONTOUR

Thu, 25 Aug 2016 08:00:00 EDT

A wastegate assembly (12) having a valve (16) to control exhaust gas flow bypassing a turbine wheel of a turbocharger. The wastegate assembly (12) has a wastegate port (14) for flow bypassing the turbine wheel. The valve (16) has an arm (20) controlling a valve head (22) relative to the port (14) for selectively blocking and unblocking the port (14) to control flow. A valve seat (26) may surround the port (14) to be operable with the valve head (22) to selectively block the port (14). A contoured side wall (30) is disposed adjacent to the port (14) and extends from the turbine housing (10) so as to be radially offset from a valve margin (25). The contoured side wall (30) may have a concave portion (40) adjacent to the valve head (22) to help effectuate desired flow at specific valve opening angles.



ENGINE ASSEMBLY WITH MODULAR COMPRESSOR AND TURBINE

Thu, 25 Aug 2016 08:00:00 EDT

An engine assembly including an engine core with at least one internal combustion engine, a first casing, a turbine module including a second casing located outside of the first casing, and a compressor module including a third casing located outside of the first and second casings. The turbine shaft extends into the first casing, is rotationally supported by a bearings all contained within the first casing, and is free of rotational support within the second casing. The first casing may be a gearbox module casing through which the turbine shaft is in driving engagement with the engine shaft. A method of driving a rotatable load of an aircraft, and an engine assembly with a rotary engine core, a gearbox module with a first casing, and a second module including a second casing located outside of the first casing and detachably connected to the first casing are also discussed.



CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE

Thu, 25 Aug 2016 08:00:00 EDT

A control device for an internal combustion engine is provided that is configured to suppress a decrease in volumetric efficiency due to an influence of a pulsation of an intake air pressure that a turbo-supercharger generates. In a case where the internal combustion engine is in a specific operating state where a local minimum point of the pulsation of the intake air pressure exists within an opening period of an intake valve, the control device actuates a second supercharger that is driven by a motive power other than exhaust gas and is disposed downstream relative to the turbo-supercharger, and also opens a bypass valve provided in a bypass passage that bypasses the second supercharger.



COMPOUND ENGINE ASSEMBLY WITH COMMON INLET

Thu, 25 Aug 2016 08:00:00 EDT

A compound engine assembly including an air conduit having an inlet in fluid communication with ambient air around the compound engine assembly, a compressor having an inlet in fluid communication with the air conduit, an engine core including at least one rotary internal combustion engine and having an inlet in fluid communication with an outlet of the compressor, a turbine section having an inlet in fluid communication with an outlet of the engine core and configured to compound power with the engine core; and at least one heat exchanger in fluid communication with the air conduit, each heat exchanger configured to circulate a fluid of the engine assembly in heat exchange relationship with an airflow from the air conduit circulating therethrough. A method of supplying air to a compound engine assembly is also discussed.



ENGINE INTAKE ASSEMBLY WITH SELECTOR VALVE

Thu, 25 Aug 2016 08:00:00 EDT

An intake assembly for a compressor providing compressed air to an internal combustion engine core, including an air conduit having at least one heat exchanger extending thereacross, an intake plenum for the compressor, a first intake conduit connected to the air conduit upstream of the heat exchanger(s), a second intake conduit connected to the air conduit downstream of the heat exchanger(s), and a selector valve configurable between a first configuration to allow a fluid communication between the intake plenum and the air conduit through the first intake conduit and a second configuration to prevent the fluid communication through the first intake conduit. Fluid communication between the intake plenum and the air conduit through the second intake conduit is allowed at least when the selector valve is in the second configuration. An engine assembly and method of supplying air to a compressor are also discussed.



HYDRAULIC DRIVEN FAN SYSTEM

Thu, 25 Aug 2016 08:00:00 EDT

A hydraulic driven fan system includes at least one first fan motor and a second fan motor connected in series with each other. The system also includes a fixed displacement pump configured to supply a pressurized flow of a hydraulic fluid to the at least one first and second fan motors. The system includes a proportional flow control valve in fluid communication with the at least one first fan motor and configured to allow a regulated amount of the pressurized flow of the hydraulic fluid there through to the corresponding at least one first fan motor. The system includes a pressure compensator disposed parallel to the proportional flow control valve and configured to maintain a pressure difference across the proportional flow control valve. The system further includes a proportional pressure relief valve disposed parallel to the second fan motor and configured to control a pressure difference across the second fan motor.



EXHAUST DEVICE OF MOTORCYCLE

Thu, 25 Aug 2016 08:00:00 EDT

An exhaust device includes left and right exhaust pipes and mufflers connected to a downstream side of the left and right exhaust pipes. The pair of left and right exhaust pipes respectively includes a merging portion. A catalyst is provided to the merging portion respectively. The pair of left and right exhaust pipes respectively includes, on a downstream side of the catalyst, a branching portion that has one side thereof extending to the muffler and the other side thereof extending to a connecting pipe. An oxygen sensor is provided to one side on a downstream side of the pair of left and right branching portions.



CONTROL DEVICE OF INTERNAL COMBUSTION ENGINE

Thu, 25 Aug 2016 08:00:00 EDT

A control device of an internal combustion engine which is provided with an exhaust purification catalyst is provided with a downstream side air-fuel ratio sensor, a feed control means for controlling the fuel feed amount so that the air-fuel ratio of the exhaust gas becomes a target air-fuel ratio, and an excess/deficiency estimating means which estimates an oxygen excess/deficiency in the exhaust gas. The target air-fuel ratio is switched to a lean air-fuel ratio when the output air-fuel ratio of the downstream side air-fuel ratio sensor becomes a rich air-fuel ratio and is switched to the rich air-fuel ratio when the stored amount of oxygen of the exhaust purification catalyst after this becomes a switching reference amount or more. An absolute value of cumulative oxygen excess/deficiency at a time period during which the target air-fuel ratio is made the lean air-fuel ratio and an absolute value of cumulative oxygen excess/deficiency at a time period during which the target air-fuel ratio is made the rich air-fuel ratio are used as the basis to correct the target air-fuel ratio etc. so that the difference of these absolute values becomes small.



REDUCTANT INJECTOR MOUNT

Thu, 25 Aug 2016 08:00:00 EDT

A reductant injector mount is provided. The reductant injector mount includes a mounting region configured to connect to an exhaust conduit. The reductant injector also includes a contoured region formed in the mounting region. The contoured region is configured to increase a velocity of an exhaust gas flow through the contoured region. The contoured region is also configured to reduce a recirculation of the exhaust gas flow through the contoured region. Further, the reductant injector mount includes a cut out portion provided on the contoured region. The cut out portion is configured to receive a reductant injector tip therethrough.



EXHAUST PURIFICATION SYSTEM

Thu, 25 Aug 2016 08:00:00 EDT

An exhaust purification system includes a selective catalytic reduction (SCR) catalyst disposed at an exhaust system of an engine for using ammonia that is generated from urea water as a reducing agent to reduce NOx contained in exhaust gas, a device that injects urea water to the SCR catalyst, an inlet-side electrode that detects capacitance within the SCR catalyst at least from a vicinity of an inlet of the SCR catalyst to a vicinity of an intermediate section in an exhaust gas flowing direction, an outlet-side electrode that detects the capacitance within the SCR catalyst at least from the vicinity of the intermediate section to an outlet of the SCR catalyst in the exhaust gas flowing direction, and a calculation unit that calculates an ammonia adsorption amount within the SCR catalyst on a basis of the capacitances detected from the inlet-side and the outlet-side electrodes.