Subscribe: Untitled
http://www.freepatentsonline.com/rssfeed/rssapp343.xml
Added By: Feedage Forager Feedage Grade B rated
Language: English
Tags:
antenna element  antenna system  antenna  array  band  device  element  elements  includes  plurality  radiating element  radiating 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: Untitled

Untitled





 



ANTENNA DEVICE

Thu, 03 Nov 2016 08:00:00 EDT

An antenna device is provided with a magnetic core having a winding core and first and second flanges provided at one end and the other end of the winding core, respectively, an antenna coil constituted of a wire wound around the winding core, and a metal layer disposed parallel to a coil axis direction of the antenna coil. The metal layer has a slit overlapped with at least a part of the first flange in a plan view.



ADAPTIVE IMPEDANCE MATCHING APPARATUS, SYSTEM AND METHOD WITH IMPROVED DYNAMIC RANGE

Thu, 03 Nov 2016 08:00:00 EDT

An embodiment of the present invention provides an apparatus, comprising' an RF matching network connected to at least one RF input port and at least one RF output port and 5 including one or more voltage or current controlled variable reactive elements; a voltage detector connected to the at least one RF output port via a variable voltage divider to determine the voltage at the at least one RF output port and provide voltage information to a controller that controls a bias driving circuit which provides voltage or current bias to the RF matching network; a variable voltage divider connected to the voltage detector and implemented using a 10 multi-pole RF switch to select one of a plurality of different resistance ratios to improve the dynamic range of the apparatus; and wherein the RF matching network is adapted to maximize RF power transferred from the at least one RF input port to the at least one RF output port by varying the voltage or current to the voltage or current controlled variable reactive elements to maximize the RF voltage at the at least one RF output port.



ANTENNAS INCLUDING AN ARRAY OF DUAL RADIATING ELEMENTS AND POWER DIVIDERS FOR WIRELESS ELECTRONIC DEVICES

Thu, 03 Nov 2016 08:00:00 EDT

A wireless electronic device includes dual radiating antennas, with each of the dual radiating antennas including a first radiating element and a second radiating element. The wireless electronic device includes power dividers, a respective one of which is associated with a respective one of the dual radiating antennas and is configured to divide the power of a signal into a first portion of the power and a second portion of the power. The first portion of the power is applied to a respective first radiating element and the second portion of the power is applied to the respective second radiating element. The wireless electronic device is configured to resonate at a resonant frequency corresponding to the first radiating element and/or the second radiating element of at least one of the plurality of dual radiating antennas when excited by a signal transmitted by at least one of the plurality of dual radiating antennas.



Antenna System and Wireless Device

Thu, 03 Nov 2016 08:00:00 EDT

An antenna system is disclosed. The antenna system includes a first antenna array coupled to a first radio card, the first antenna array having a plurality of horizontal antennas operating at a first frequency band. A second antenna array is coupled to a second radio card. The second antenna array includes a plurality of dual-band antennas operating at the first frequency band and a second frequency band. The first antenna array and the second antenna array are arranged on a substrate such that a first antenna pattern formed by the first antenna array and a second antenna pattern formed by the second antenna array are mutually orthogonal.



SEGMENTED STRUCTURE, IN PARTICULAR FOR A SATELLITE ANTENNA REFLECTOR, PROVIDED WITH AT LEAST ONE ROTATIONAL AND TRANSLATIONAL DEPLOYMENT DEVICE

Thu, 03 Nov 2016 08:00:00 EDT

A segmented structure includes at least two panels, wherein a first panel is referred to as main panel, and a second panel is referred to as secondary panel. The structure also includes at least one deployment device having a connecting arm secured to the rear face of the secondary panel and connected to the rear face of the main panel. The deployment device includes a movement system with a rotation unit that generates a rotation of the connecting arm about a reference axis, and a translation unit that generates a movement of the connecting arm in translation along this reference axis, so as bring the secondary panel into a stowed position or into a deployed position.



ANTENNA SYSTEM

Thu, 03 Nov 2016 08:00:00 EDT

An antenna system includes a first dipole antenna element and a second dipole antenna element. The first dipole antenna element includes a first feeding radiation element and a first grounding radiation element. The first feeding radiation element has an extension portion. The first grounding radiation element has an open slot. The extension portion extends into the interior of the open slot. The second dipole antenna element includes a second feeding radiation element and a second grounding radiation element. The first dipole antenna element and the second dipole antenna element are both excited by a signal source. The first dipole antenna element operates in a low-frequency band. The second dipole antenna element operates in a high-frequency band.



DIELECTRIC RESONATOR ANTENNA ARRAYS

Thu, 03 Nov 2016 08:00:00 EDT

Arrays of low permittivity Polymer-based Resonator Antenna elements with different configurations. Individual array elements can be fabricated with complicated geometries; these elements can be assembled into complicated patterns as a single monolithic fabricated structure using narrow wall connecting structures, which removes the requirement to position and assemble the array elements. Monolithic array structures can be assembled as sub-arrays in larger array structures. Elements, sub-arrays, and arrays can also be formed by inserting dielectric materials into cavities defining their lateral geometries, and fabricated in polymer templates. The polymer templates can be removed or retained to function as part of the antenna. Effective excitation is achieved by one of a number of coupling methods, including standing metal strip feeding on the vertical sides of the elements, feeding by tall metal transmission lines in contact or in close proximity to the vertical sides of the elements, modified microstrip feeding, or aperture feeding by using a slot in the metal plane underneath the elements. The wideband array feeds are realized by optimized transmission line distribution networks which include wideband matching sections.



MAGNETIC NANOCOMPOSITE MATERIALS AND PASSIVE COMPONENTS FORMED THEREWITH

Thu, 03 Nov 2016 08:00:00 EDT

A method apparatus and material are described for radio frequency passives and antennas. In one example, an electronic component has a synthesized magnetic nanocomposite material with aligned magnetic domains, a conductor embedded within the nanocomposite material, and contact pads extending through the nanocomposite material to connect to the conductor.



ANTENNA DEVICE

Thu, 03 Nov 2016 08:00:00 EDT

An antenna device is provided with a magnetic core having a winding core, an antenna coil having a wire wound around the winding core, and a metal layer crossing a coil axis direction of the antenna coil. The metal layer has a slit and an edge of the slit crosses an inner diameter portion of the antenna coil in a plan view.



ASSEMBLY-TYPE DUAL-BAND PRINTED ANTENNA

Thu, 03 Nov 2016 08:00:00 EDT

An assembly-type dual-band printed antenna may include a substrate, an antenna signal feed-in end, a first radiator, a substrate assembly and a second radiator. The antenna signal feed-in end may be disposed on the substrate. The first radiator may be disposed on the substrate and may be coupled to the antenna signal feed-in end. The substrate assembly may be installed on the substrate and may include a via hole. The second radiator may be disposed on the substrate assembly and may be coupled to the first radiator through the via hole.



Dual-Band Antenna and Antenna System

Thu, 03 Nov 2016 08:00:00 EDT

The present invention discloses a dual-band antenna. The dual-band antenna includes a first radiating element and a second radiating element. The first radiating element is parallel to a first plane, operates at a first frequency band, and has a first edge and a second edge. The first edge and the second edge are connected through a central portion. The second radiating element is parallel to a second plane, adjacent to the first edge, the second edge and a first side of the central portion, and operates at a second frequency band, where the first plane is perpendicular to the second plane.



VOLUME BASED GRADIENT INDEX LENS BY ADDITIVE MANUFACTURING

Thu, 03 Nov 2016 08:00:00 EDT

Techniques are described for forming a gradient index (GRIN) lens for propagating an electromagnetic wave comprising receiving, by a manufacturing device having one or more processors, a model comprising data specifying a plurality of layers, wherein at least one layer of the plurality of layers comprises an arrangement of one or more volume elements comprising a first dielectric material and a second dielectric material, wherein the at least one layer of the plurality of layers has a dielectric profile that is made up of a plurality of different effective dielectric constants of the volume elements in the layer, and generating, with the manufacturing device by an additive manufacturing process, the GRIN lens based on the model.



ANTENNA DIRECTIVITY CONTROL SYSTEM AND RADIO DEVICE

Thu, 03 Nov 2016 08:00:00 EDT

An antenna directivity control system includes an antenna including a plurality of antenna elements, feeding points for the plurality of antenna elements being mutually different; and a controller for controlling weight for each of the plurality of antenna elements, wherein each of the plurality of antenna elements includes a feed element connected to the feed point, and a radiating element that functions, upon power being fed by establishing electromagnetic field coupling with the feed element, as a radiating conductor, and wherein the controller controls a directivity of the antenna by adjusting an amplitude of a signal at each of the feeding points.



ENABLE A RADIATING ELEMENT BASED ON AN ORIENTATION SIGNAL

Thu, 03 Nov 2016 08:00:00 EDT

Example implementations relate to enabling a radiating element based on an orientation signal. For example, a method may include receiving at a controller of a computing device an orientation signal from an orientation sensor. The orientation signal corresponds to a first orientation of an antenna element of the computing device. The method may also include enabling via the controller a first radiating element of the antenna element based on the orientation signal. The method may further include disabling via the controller a second radiating element of the antenna element based on the orientation signal.



Full-Band Antenna System

Thu, 03 Nov 2016 08:00:00 EDT

The disclosure provides a full-band antenna system including a metal backing and a main antenna module. The metal backing includes a header, a middle cover and a lower head. The main antenna module includes a circuit board, a feed part on the circuit board, a ground point and a matching circuit. The circuit board includes a substrate and an earth plate. The feed part and the matching circuit are located on the substrate, and the ground point is on the earth plate. The matching circuit is connected with the feed part, including a variable capacitance. By the variable capacitance of the matching circuit, it is beneficial to adjust the performance of antenna of all range of frequency conveniently and optimize the antenna's radiant efficiency up to the utmost extent.



Electronic Device With Configurable Symmetric Antennas

Thu, 03 Nov 2016 08:00:00 EDT

An electronic device may have wireless circuitry with antennas. An antenna resonating element arm for an antenna may be formed from peripheral conductive structures running along the edges of a device housing that are separated from a round by an elongated opening. The electronic device may have a central longitudinal axis that divides the antenna resonating element arm and other antenna structures into symmetrical halves that exhibit mirror symmetry with respect to the central longitudinal axis. The antenna structures may include symmetrical slot antenna resonating elements on opposing sides of the central longitudinal axis. Electrical components such as switches and antenna tuning inductors may be coupled to the antenna structures in a configuration that is symmetrical with respect to the central longitudinal axis. The electrical components may be used to place the antenna structures in an unflipped configuration or in a symmetrical flipped configuration.



DIPOLE FIXATION IN ANTENNA SYSTEM

Thu, 03 Nov 2016 08:00:00 EDT

The present invention provides a dipole fixation in an antenna system for fixing dipoles (1) on a reflector (2), the dipole fixation comprising fixing members (3) passing through apertures on the reflector (2) to fix the dipoles (1) on the reflector (2); a first non-conductive member (4) arranged between the dipoles (1) and the reflector (2); and a second non-conductive member (5) arranged between the fixing members (3) and the reflector (2). The dipole fixation of this invention avoids any metal contact between the dipoles and the reflector, guaranteeing the PIM reliability for a long time and obtaining a stable connection.



ROTARY CONTROL WITH INTEGRATED ANTENNA

Thu, 03 Nov 2016 08:00:00 EDT

A rotary control (102) having an antenna radiating element (202) integrated therein is provided. The rotary control (102) is formed of a knob housing (112) providing an axis of circumferential rotation (120). The antenna radiating element (202) is rotatable along the axis of circumferential rotation (120) in response to rotation of the knob housing (112). The antenna radiating element (202) is coupled to a rotatable antenna feed electrode (230). The rotary control (102) having the integrated antenna radiating element (202) may be mounted to a communication device housing having a stationary capacitive feed electrode (220). The stationary capacitive feed electrode (220) and rotatable antenna feed electrode (230) provide capacitive coupling for the transfer of RF signals to and from antenna radiating element (202) regardless of the position of rotation of the knob housing (112).



ELECTRICALLY CONDUCTIVE ARTICLES WITH DISCRETE METALLIC SILVER LAYERS AND METHODS FOR MAKING SAME

Thu, 03 Nov 2016 08:00:00 EDT

An electrically conductive article that includes a monolithic glass body having a first primary surface; and an electrically conducting element formed in the body. The element includes a discrete layer, or a plurality of discrete layers, of metallic silver. Each layer has a thickness T such that 0.1 μm≦T≦0.5 μm and an electrical resistivity of about 50 nΩ·m to about 2000 nΩ·m. In addition, the element is spaced apart from the first primary surface by a distance D, wherein 0.1 μm≦D≦20 μm. In some aspects, the electrically conducting element and/or the monolithic glass body are configured as an antenna assembly, an optical fiber or a flexible glass substrate.