Subscribe: Untitled
http://www.freepatentsonline.com/rssfeed/rssapp342.xml
Added By: Feedage Forager Feedage Grade B rated
Language: English
Tags:
antenna  configured  device  method  object  present  radar  rate  reception  sensor  signal  signals  system  target  vehicle 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: Untitled

Untitled





 



SYSTEM AND METHOD FOR WIDELY-SPACED COHERENT TRANSMIT ARRAYING USING A REMOTE RECEIVER

Thu, 06 Apr 2017 08:00:00 EDT

A system and method for operating a communications or radar system wherein the system is a closed-loop coherent transmit array consisting of a plurality of antenna elements that may be widely-spaced, many wavelengths apart, an array control system, and a remote receiver that can feedback a measure of the transmit performance, and is a cooperative receiver, a bent-pipe, or a reflector. The method involves generation of weights which are applied to the array transmit signals based on feed-back data from a remote receiver compensating for at least one: circuit, propagation, and polarization phase errors. The method correlates feedback performance changes with transmit weight perturbations, enabling maximization of transmitted power delivered to the remote receiver. The method further involves an optimization control process that can be coordinated, with systematic weight perturbations and adjustment, or which can be operated asynchronously and autonomously, nevertheless achieving maximization of the received signal power.



METHOD FOR QUANTIZED-MULTIPLE/NARROW BEAM FORMING WITHIN ARRAY ANTENNA BEAMWIDTH, DEVICE FOR QUANTIZED-MULTIPLE/NARROW BEAM FORMING WITHIN ARRAY ANTENNA BEAMWIDTH, AND RADAR SYSTEM

Thu, 06 Apr 2017 08:00:00 EDT

A method includes forming an output amplitude vector of an array antenna of addition values of a signal incoming wave reception output and a reception system noise output; generating a virtual array antenna output amplitude vector of addition values of a signal incoming wave reception output amplitude and a virtual noise wave reception output amplitude such that array output average power of the virtual noise wave is equivalent to average power of the reception system noise output, and deriving a singular linear equation indicating cause-effect relationship of the concerned generation; deriving a non-singular linear equation from the singular linear equation; and obtaining a signal incoming wave amplitude vector using the non-singular linear equation. While deriving the singular linear equation, a virtual array antenna output amplitude vector is generated that includes amplitudes in quantized-unit-angle narrow beams obtained by dividing the transceiving beamwidth of the incoming wave into quantized unit angles.



CONFIGURABLE SEGMENTED ANTENNA

Thu, 06 Apr 2017 08:00:00 EDT

A configurable segmented antenna is described herein. A monitor component can be configured to detect at least one parameter corresponding to one or more segments of an antenna integrated with a communications device. An antenna component can be configured to select at least one segment of the one or more segments in response to the at least one parameter. A control component can be configured to modify a quality of a signal according to the at least one parameter. Further, a transmission component can be configured to transmit the signal from the at least one segment based on the quality.



REGISTERED MULTI-LAYER UNDERGROUND AND SURFACE IMAGES IN LAND SURVEYS

Thu, 06 Apr 2017 08:00:00 EDT

A method of land surveying that electronically registers together multi-layer underground and surface images of a surface volume with buried utilities and other infrastructures. Such method further comprises assembling and presenting the combition to a device in the field that visually guides crews in their safe digging of the ground nearby. The orienting, scaling, and registering of a first image layer is to a standardized orientation and scaling on a map of a photograph of a land surface from a zenith point in space above. Then the orienting, scaling, and registering of a second image layer is made to the standardized orientation and scaling on the map. This layer is a result of an ground penetrating radar investigation of buried objects point-by-point in an immediate search area of a corresponding ground surface. Underground buried objects and utilities are thereby located to make safe digging nearby.



METHOD AND SYSTEM FOR POSITIONING AND TIMING OF A RADIONAVIGATION RECEIVER

Thu, 06 Apr 2017 08:00:00 EDT

The present invention describes a method and a system to compute the time (t1) and the position (P1) of a receiver (102, 805, 901) based on satellite radiofrequency signals without accurate, a priori time or position information and without the need for demodulating data from the signals received by the satellites (103, 800). In particular, the present invention computes the receiver time (t1) and position (P1) by estimating the time offset between the actual time (t1) and an initial time (t0), which can be defined arbitrarily and even have an error of hours or days. The estimation of this time offset is performed by updating Doppler estimations (D(t0), D(t1)) between different times using Doppler change rates.



SYSTEMS AND METHODS FOR GENERATING SIGNALS FROM TERRESTRIAL TRANSMITTERS, AND FOR PROCESSING THE SIGNALS USING GNSS RECEIVER HARDWARE

Thu, 06 Apr 2017 08:00:00 EDT

Generating signals from non-GNSS transmitters, and processing the signals using a GNSS positioning module. Systems and methods identify a chipping rate, identify a PN code length, generate a PN code that has a length equal to the identified PN code length, generate a positioning signal using the identified chipping rate and the generated PN code, and transmit the positioning signal from the transmitter. The PN code length may produce, at the identified chipping rate, a PN code duration that is equal to or is a multiple of a PN code duration used in a GNSS system, the identified chipping rate may be equal to or a multiple of a chipping rate used in a GNSS system, and the identified PN code length may be equal to or a multiple of a PN code length used in a GNSS system.



DETECTION APPARATUS, UNDERWATER DETECTION APPARATUS, RADAR APPARATUS, AND DETECTION METHOD

Thu, 06 Apr 2017 08:00:00 EDT

A detection apparatus is provided. The detection apparatus includes a hardware processor programmed to at least calculate a first echo intensity of a first reception signal generated from a reception wave reflected on a reflection object, calculate a second echo intensity of a second reception signal generated from a reception wave reflected on the reflection object, a signal duration of the second reception signal being shorter than that of the first reception signal, and detect a target from a comparison of the first echo intensity and the second echo intensity.



APPARATUS AND METHOD FOR DETECTING OBJECT ON ROAD

Thu, 06 Apr 2017 08:00:00 EDT

An apparatus and method for detecting an object on a road are capable of enhancing performance of a driving environment recognition system of a vehicle by detecting a size and a position of an object on a road with high accuracy on the basis of radar and lidar data respectively obtained using a radar sensor and a lidar sensor installed in the vehicle.



Radar-Enabled Sensor Fusion

Thu, 06 Apr 2017 08:00:00 EDT

This document describes apparatuses and techniques for radar-enabled sensor fusion. In some aspects, a radar field is provided and reflection signals that correspond to a target in the radar field are received. The reflection signals are transformed to provide radar data, from which a radar feature indicating a physical characteristic of the target is extracted. Based on the radar features, a sensor is activated to provide supplemental sensor data associated with the physical characteristic. The radar feature is then augmented with the supplemental sensor data to enhance the radar feature, such as by increasing an accuracy or resolution of the radar feature. By so doing, performance of sensor-based applications, which rely on the enhanced radar features, can be improved.



OBJECT DETECTION DEVICE AND OBJECT DETECTION METHOD

Thu, 06 Apr 2017 08:00:00 EDT

An object detection device includes a sub-cluster generating circuitry which, in operation, divides a cluster generated by a cluster generator into one or more first sub-clusters each corresponding to a part of an object having a different traveling direction or traveling speed from a main part of the object and a second sub-cluster corresponding to the main part of the object; and a speed calculating circuitry which, in operation, uses one or more capture points belonging to the second sub-cluster and calculates a traveling speed of the object.



RADAR-VISION FUSION FOR TARGET VELOCITY ESTIMATION

Thu, 06 Apr 2017 08:00:00 EDT

A method of determining velocity of a target and a fusion system on a moving platform to determine the velocity of the target are described. The method includes obtaining, using a radar system, position and radial velocity of the target relative to the moving platform, obtaining, using a vision system, optical flow vectors based on motion of the target relative to the moving platform, and estimating a dominant motion vector of the target based on the optical flow vectors. The method also includes processing the position, the radial velocity, and the dominant motion vector and determining the velocity of the target in two dimensions.



AUTOMATED VEHICLE RADAR SYSTEM TO DETERMINE YAW-RATE OF A TARGET VEHICLE

Thu, 06 Apr 2017 08:00:00 EDT

A radar system suitable for an automated vehicle includes a radar sensor and a controller. The radar-sensor is mounted on a host-vehicle. The radar-sensor is operable to detect radar-signals reflected by scattering-points of a target-vehicle located proximate to the host-vehicle. The controller is in communication with the radar-sensor. The controller is configured to determine a present-range-rate, a present-azimuth, and optionally a present-range, of each of the scattering-points at a present-time. The controller is also configured to recall a prior-range-rate, a prior-azimuth, and optionally a prior-range, of each of the scattering-points at a prior-time. The controller is also configured to calculate a yaw-rate of the target-vehicle at the present-time based on the present-range-rate, the present-azimuth, the prior-range-rate, and the prior-azimuth, and optionally the present-range and the prior-range, of each of the scattering-points.



RADAR DEVICE, SIGNAL PROCESSING DEVICE FOR RADAR DEVICE, AND SIGNAL PROCESSING METHOD

Thu, 06 Apr 2017 08:00:00 EDT

There is provided a radar device. A Fourier transform unit decomposes each of respective beat signals into a plurality of frequency components. A bearing computing unit specifies arrival angles of reflected-wave signals based on peak frequency components included in the plurality of frequency components, and calculates the signal intensities of arrival angle components of the reflected waves with respect to a plurality of neighborhood frequency components of the peak frequency components when the plurality of arrival angles of the reflected-wave signals are specified. A calculating unit selects one frequency component having the highest signal intensity from among the plurality of neighborhood frequency components, with respect to each of the arrival angles specified at a plurality of frequencies, and computes a distance between the radar device and a target on the basis of the one frequency component selected with respect to each of the arrival angles.



VEHICLE RADAR DEVICE

Thu, 06 Apr 2017 08:00:00 EDT

A vehicle radar device provided with a transmission and reception unit for generating a beat signal from a transmission signal and a reception signal, a frequency analysis unit for generating a two-dimensional spectrum including a speed component and a distance component by applying prescribed frequency analysis processing to a signal sequence of the beat signal, and a speed determination unit for dividing the speed component of the two-dimensional spectrum into a plurality of blocks, carrying out constant false alarm rate (CFAR) processing on each of the plurality of blocks, and specifying the speed of the vehicle of the radar device on the basis of a threshold obtained through the CFAR processing.



SCALING FIXED-POINT FAST FOURIER TRANSFORMS IN RADAR AND SONAR APPLICATIONS

Thu, 06 Apr 2017 08:00:00 EDT

Present disclosure describes an improved scaling mechanism for a multi-stage fixed-point FFT algorithm used to process signals received by radar or sonar systems. Proposed scaling includes scaling an output of every pair of consecutive butterfly stages of the FFT algorithm by a scaling factor equal to two times of the inverse of a growth factor for the pair of consecutive butterfly stages for the FFT algorithm for a purely complex exponential input signal. Besides this scaling, input signals are allowed to overflow by saturation. Such mechanism yields adequate performance of radar and sonar receivers implementing fixed-point FFTs for any types of input signals, from random to substantially complex exponential or sinusoidal signals. Proposed scaling achieves a balance between having signal to noise ratio (SNR) that is possible to obtain for a particular input signal and SNR that is needed to successfully process that signal for radar and sonar applications.



MONITORING THICKNESS UNIFORMITY

Thu, 06 Apr 2017 08:00:00 EDT

Devices, methods, and systems for monitoring thickness uniformity are described herein. One system includes a transmitter configured to transmit a signal through a portion of a material while the material is moving, an attenuator configured to absorb a first portion of the transmitted signal, a reflector configured to reflect a second portion of the transmitted signal, a receiver configured to receive the reflected signal, and a computing device configured to determine a thickness of the portion of the material based on a time delay between the transmission of the signal and the reception of the reflected signal



METHOD AND EQUIPMENT FOR MONITORING TYRE WEAR, AND VEHICLE ON-BOARD WEAR-MONITORING SYSTEM

Thu, 06 Apr 2017 08:00:00 EDT

A reliable and precise measurement of tire tread wear, by using wide-band (UWB) pulses and analyzing the signature obtained by reflection of these pulses from the tread, in order to deduce its state of wear therefrom. The tire wear monitoring device (100) includes a control unit (110) for signal control and data processing, this control unit (110) being coupled to a generator of ultra wide band or UWB signals (120), which is itself coupled to an antenna for incident UWB pulse transmission (140), and an antenna for receiving the UWB pulses (150) reflected from at least one interface of the tire tread, the reception antenna (150) being coupled to a pulse signal receiver (180) which is itself coupled to the control unit (110).