Subscribe: Untitled
http://www.freepatentsonline.com/rssfeed/rssapp701.xml
Added By: Feedage Forager Feedage Grade B rated
Language: English
Tags:
based  configured  control  data  device  engine  fuel  information  method  pressure  route  sensor  system  unit  vehicle 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: Untitled

Untitled





 



Commercial and General Aircraft Avoidance using Multi-spectral wave detection

Thu, 25 Aug 2016 08:00:00 EDT

This disclosure is directed to a detection and avoidance apparatus for an unmanned aerial vehicle (“UAV”) and systems, devices, and techniques pertaining to automated object detection and avoidance during UAV flight. The system may detect objects within the UAV's airspace through acoustic, visual, infrared, multispectral, hyperspectral, or object detectable signal emitted or reflected from an object. The system may identify the source of the object detectable signal by comparing features of the received signal with known sources signals in a database. The features may include, for example, a multispectral signature emitted or reflected by the objet. Furthermore, a trajectory envelope for the object may be determined based on characteristic performance parameters for the object such as cursing speed, maneuverability, etc. The UAV may determine an optimized flight plan based on the trajectory envelopes of detected objects within the UAV's airspace.



AUTOMATED AIRCRAFT GROUND THREAT AVOIDANCE SYSTEM

Thu, 25 Aug 2016 08:00:00 EDT

This disclosure is directed to methods, systems, and computer program products for automated avoidance of ground threats by an aircraft. In one example, a method includes determining, by one or more processing devices, whether a sufficient evasive maneuver for an aircraft to avoid a detected ground surface threat is performed via pilot controls of the aircraft within a selected threshold after an alert of the ground surface threat is outputted via one or more cockpit systems of the aircraft. The method further includes, in response to determining that a sufficient evasive maneuver via the pilot controls is not performed within the selected threshold, controlling, by the one or more processing devices, one or more flight systems of the aircraft to perform an automated evasive maneuver to avoid the ground surface threat.



Commercial and General Aircraft Avoidance using Acoustic Pattern Recognition

Thu, 25 Aug 2016 08:00:00 EDT

This disclosure is directed to a detection and avoidance apparatus for an unmanned aerial vehicle (“UAV”) and systems, devices, and techniques pertaining to automated object detection and avoidance during UAV flight. The system may detect objects within the UAV's airspace through acoustic, visual, infrared, multispectral, hyperspectral, or object detectable signal emitted or reflected from an object. The system may identify the source of the object detectable signal by comparing features of the received signal with known sources signals in a database. The features may include, for example, an acoustic signature emitted or reflected by the objet. Furthermore, a trajectory envelope for the object may be determined based on characteristic performance parameters for the object such as cursing speed, maneuverability, etc. The UAV may determine an optimized flight plan based on the trajectory envelopes of detected objects within the UAV's air-space.



IDENTIFYING UNMANNED AERIAL VEHICLES FOR MISSION PERFORMANCE

Thu, 25 Aug 2016 08:00:00 EDT

A device receives a request for a mission that includes traversal of a flight path from a first location to a second location and performance of mission operations, and calculates the flight path from the first location to the second location based on the request. The device determines required capabilities for the mission based on the request, and identifies UAVs based on the required capabilities for the mission. The device generates flight path instructions for the flight path and mission instructions for the mission operations, and provides the flight path/mission instructions to the identified UAVs to permit the identified UAVs to travel from the first location to the second location, via the flight path, and to perform the mission operations at the second location.



METHOD AND APPARATUS FOR PROVIDING TRAFFIC JAM DETECTION AND PREDICTION

Thu, 25 Aug 2016 08:00:00 EDT

An approach is provided for predicting starting points and/or ending points for traffic jams in one or more travel segments. The approach involves processing and/or facilitating a processing of probe data associated with at least one travel segment to cause, at least in part, a generation of at least one speed curve with respect to a distance dimension and a time dimension, wherein the probe data includes speed information, and wherein the at least one speed curve indicates at least one previous starting point, at least one previous ending point, or a combination thereof for one or more previous traffic jams based, at least in part, on the speed information. The approach also involves processing and/or facilitating a processing of the at least one previous starting point, the at least one previous ending point, or a combination thereof to determine at least one starting point trend curve, at least one ending point trend curve, or a combination thereof with respect to the distance dimension and the time dimension. The approach further involves determining at least one predicted evolution of at least one starting point, at least one ending point, or a combination thereof for at least one traffic jam in the at least one travel segment based, at least in part, on the at least one starting point trend curve, the at least one ending point trend curve, or a combination thereof.



Estimating Travel Times Through Transportation Structures Using Location Traces

Thu, 25 Aug 2016 08:00:00 EDT

A method, apparatus, computer program product, and device with various means are disclosed for determining the time it takes to a traverse a transportation structure by enclosing a representation of a transportation structure with a bounding polygon, specifying a plurality of gates which represent legitimate entry or exit points of the transportation structure as one or more edges of the bounding polygon, and computing the travel time for a probe traveling through the bounding polygon via the gates. Computing the probe's travel time comprises generating a location trace of movement of the probe, determining an entry and exit time, and calculating the difference between the exit time and the entry time. Determining the entry and exist time can be done by interpolation. An average of a set of computations can be used to get an average of the time it takes traverse the transportation structure.



MANAGEMENT SYSTEM AND MANAGEMENT METHOD FOR MINING MACHINE

Thu, 25 Aug 2016 08:00:00 EDT

A management system of the mining machine includes a position information detector which detects position information about the mining machine; an operation information detector detecting operation information about the mining machine; and a first evaluation device evaluating the operation information based on the position information and the operation information. A route in a mine includes nodes disposed at a predetermined distance and links connecting between the adjacent nodes, and includes route information including a specific section in which a difference in a gradient between the adjacent links is a predetermined value or less, a difference in an orientation between the adjacent links is a predetermined value or less, and no intersection exists between the adjacent links. The first evaluation device evaluates the operation information in the specific section of the route.



METHOD AND APPARATUS FOR PROVIDING VEHICLE CLASSIFICATION BASED ON AUTOMATION LEVEL

Thu, 25 Aug 2016 08:00:00 EDT

An approach is provided for classifying one or more vehicles based on their level of automation. The approach involves determining training sensor data collected during at least one driving operation of one or more vehicles, wherein one or more automation levels of the one or more vehicles are known. The approach also involves determining one or more sensor signatures for the one or more automation levels based, at least in part, on one or more values of one or more classification features extracted from the training sensor data. The approach further involves causing, at least in part, a classification of one or more other vehicles according to the one or more automation levels based, at least in part, on the one or more sensor signatures and sensor data associated with the one or more other vehicles.



GUEST VEHICLE USER REPORTING

Thu, 25 Aug 2016 08:00:00 EDT

A system to access one or more user profiles that govern one or more vehicle functions. The system cooperates with a processor and verification module which are adapted to verify, using one or more of biometric information, gesture recognition, facial recognition and device identification information, that a user has authority to access the one or more user profiles, where the one or more profiles are stored in one or more of a vehicle, a cloud and a communications device. An edit module is further provided and adapted to allow the user to make one or more edits to the one or more user profiles.



Wheeled Vehicle Event Data Recorder Forensic Recovery and Preservation System

Thu, 25 Aug 2016 08:00:00 EDT

A system and method to preserve the integrity of data being extracted from an electronic data recorder (“EDR”) of an electronic control module (“ECM”) makes use of a forensic link adapter (20) and, optionally, a sensor simulator (10) (when ECM is out of the vehicle). The forensic link adapter (20) has one or more first microprocessors (23) and a first software means which prevent any message being sent by an external network from corrupting the previously recorded data measurements. The data measurements are then extracted, verified, and stored in a separate file. The sensor simulator (10) has one or more second microprocessors (23), a second software means, and a bank of resistors (21) that mimic sensors normally in communication with the ECM. The simulator “tricks” the ECM into thinking it is still in the vehicle by using the replicating vehicle system values the ECM normally sees when in the vehicle.



Dynamic Presentation of Vehicular-Reference Information

Thu, 25 Aug 2016 08:00:00 EDT

A method, system, and apparatus for dynamically presenting desired vehicular-reference information for a motor vehicle under evaluation is provided. In one aspect, an example method includes: (a) a computing system receiving, via a user interface, (i) vehicular-reference data indicating at least one vehicle parameter, and (ii) first information-presentation data indicating at least one information-presentation preference; (b) the computing system selecting at least one first piece of vehicular-reference information based on at least one of the received vehicular-reference data and the received first information-presentation data; (c) the computing system selecting a presentation window based on at least one of the received vehicular-reference data and the received first information-presentation data; and (d) the computing system causing a visual depiction of (i) the selected vehicular-reference information and (ii) the selected presentation window to be displayed on a graphical display.



Method and Apparatus for Vehicle Warning Light Handling

Thu, 25 Aug 2016 08:00:00 EDT

A system includes a processor configured to detect a vehicle condition associated with a warning light. The processor is also configured to obtain explanatory information explaining the cause of the warning light. The processor is further configured to present the explanatory information via a vehicle display. Also, the processor is configured to present a plurality of options for further action with the explanatory information and, upon selection of one of the options, take further steps in accordance with the selection option.



Methods and systems for generating and outputting test drive scripts for vehicles

Thu, 25 Aug 2016 08:00:00 EDT

Systems and methods pertaining to generating a test drive script (TDS) based on vehicle data values (VDV) from a vehicle and driving circumstance parameters (DCP) that correspond to use of the vehicle when the VDV are captured are described herein. The TDS can include a baseline path that includes the paths taken by the vehicle while the VDV are captured. The TDS can include an alternate path that includes paths that approximate one or more paths taken by the vehicle while the VDV are captured. The VDV can include, but are not limited to, DTC and PID values from the vehicle. The DCP can include, but are not limited to, traffic condition parameters, meteorological parameters, location parameters, and motion parameters. The TDS can include notifications to alert a user to a location where certain VDV were captured to assist the user in recreating a symptom in a vehicle.



Method and Apparatus for Dynamic Position Reporting Rate Determination

Thu, 25 Aug 2016 08:00:00 EDT

A system includes a processor configured to receive a geo-fence definition defining a geographic perimeter or point. The processor is also configured to receive a vehicle location. Further, the processor is configured to determine a distance from the vehicle location to a most proximate geo-fence point and determine a reporting-rate that varies based on proximity to the geo-fence. The processor is also configured to report a vehicle location at intervals defined by the reporting-rate.



Techniques for Enhanced Accurate Pose Estimation

Thu, 25 Aug 2016 08:00:00 EDT

The described technology regards an augmented reality system and method for estimating a position of a location of interest relative to the position and orientation of a display. Systems of the described technology include a plurality of sensors, a processing module or other computation means, and a database. Methods of the described technology use data from the sensor package useful to accurately generate signals to render graphical user interface information on a display, using vision-aiding processes, including horizon-matching, land-matching and Sun-matching.



AIRBORNE SCANNING SYSTEM AND METHOD

Thu, 25 Aug 2016 08:00:00 EDT

A scanning system for scanning data from a plurality of data records (for example barcodes or RRD tags) comprises at least one Unmanned Aerial Vehicle (UAV) 100 and at least one scanner (not shown) mounted on said UAV 180 and adapted to scars said data records, thereby to extract data from said data records. The system may include remote control means operable to control the UAV, and an imaging system for transferring video feed from the UAV to a controller location in spaced relation to the UAV. A position controller and method of scanning are also provided.



Unknown

Thu, 25 Aug 2016 08:00:00 EDT

An input device (12), in particular, a joystick, for controlling work equipment and vehicles (14), has a control unit (30) integrated in the input device (12), with a data memory (32), with operating software (34) stored in the data memory (32) for generating control signals (36) caused by operating the input device (30), with a hardware interface (38) for outputting the control signals (36), and with a wireless communication interface (44) for a wireless connection of the input device (12) with a mobile terminal unit (16), which is constituted for the diagnosis, maintenance, and/or configuration of the input device (12), or which can be established via a link of the input device (12) with a central processing unit (18) for the diagnosis, maintenance, and/or configuration of the input unit (12). A service device system with at least one such input device is also described.



Near-flight Testing Maneuvers for Autonomous Aircraft

Thu, 25 Aug 2016 08:00:00 EDT

Methods, devices, systems, and non-transitory process-readable media for evaluating operating conditions of an autonomous aircraft before performing a mission by executing brief near-flight testing maneuvers at a low elevation. A processor of the autonomous aircraft may receive near-flight testing maneuver instructions that indicate a near-flight testing maneuver to be executed by the autonomous aircraft. The processor may control motors to cause the aircraft to execute a near-flight testing maneuver within a testing area, obtain data indicating stability and performance information while executing the near-flight testing maneuvers, and take an action in response to the obtained data. Actions may include adjusting a position of a payload, a weight or a portion of the aircraft based, and adjusting a flight plan. The near-flight testing maneuvers may include a sequence of moves for testing stability of the aircraft and payload executing a flight path under anticipated flying conditions.



VEHICLE MANAGEMENT SYSTEM AND VEHICLE MANAGEMENT METHOD

Thu, 25 Aug 2016 08:00:00 EDT

A vehicle management system for managing vehicles used by users has a usage managing unit configured to accept a user's request for using to use one of the vehicles, and manage the vehicles and parking spaces in which the vehicles are parked, an acquisition unit configured to acquire energy information from the vehicles, the energy information indicating a remaining amount of energy used for traveling of the vehicle, a determination unit configured to compare the remaining amount acquired by the acquisition unit with a remaining amount threshold that represents a shortage of energy, determine that the vehicle needs supply of energy when the remaining amount is lower than the remaining amount threshold, and specify a recovery vehicle that has been determined as needing supply of energy as a recovery vehicle, and a command outputting unit configured to output a recovery command for recovering the recovery vehicle from the parking space.



METHODS AND SYSTEMS FOR MOBILE-AGENT NAVIGATION

Thu, 25 Aug 2016 08:00:00 EDT

Aspects of the present invention are related to methods and systems for autonomous navigation using visual-landmark recognition. One method may include scanning a captured image to detect a machine-readable marker and extracting encoded data therefrom. The data may include an identifying key usable to access a database to retrieve physical attributes associated with the marker. The method may include using the physical attributes to compute a position and an orientation of a mobile agent relative to a landmark object associated with the marker. The method may further include determining a path toward a next route location based on the position of the next route location and the computed position and orientation of the mobile agent and controlling the mobile agent to drive along the path toward the next route location.



Transport Vehicle Control Device and Transport Vehicle Control Method

Thu, 25 Aug 2016 08:00:00 EDT

A transport vehicle control device of the present invention includes: a storage portion that stores map information in which a state of a cell where a rack is arranged is saved for each cell; a data transceiver that receives the latest state of a cell from a transport vehicle which transports the rack; a map manager that updates the map information, each time the data transceiver receives the latest state of the cell, using the latest state of the cell received; and a route searcher that searches for a route for the transport vehicle transporting the rack based on the map information updated. The transport vehicle control device of the present invention further includes a cell-for-rearranged-rack determiner that determines a cell into which the rack is rearranged on the basis of a usage frequency of articles to be stored on the rack.



Multiple Autopilot Interface

Thu, 25 Aug 2016 08:00:00 EDT

Various implementations described herein are directed to a non-transitory computer readable medium having stored thereon computer-executable instructions which, when executed by a computer, may cause the computer to display buttons or icons corresponding to a plurality of autopilots. The computer may receive a selection of one of the autopilots. The computer may display autopilot commands corresponding to the selected autopilot. The computer may receive a selection of one of the commands. The computer may also transmit a message corresponding to the selected command to the selected autopilot.



MULTI-PURPOSED SELF-PROPELLED DEVICE

Thu, 25 Aug 2016 08:00:00 EDT

A self-propelled device can include at least a wireless interface, a housing, a propulsion mechanism, and a camera. Using the camera, the self-propelled device can generate a video feed and transmit the video feed to a controller device via the wireless interface. The self-propelled device can receive an input from the controller device indicating an object or location in the video feed. In response to the input, the self-propelled device can initiate an autonomous mode to autonomously operate the propulsion mechanism to propel the self-propelled device towards the object or location indicated in the video feed.



DRIVE ASSIST APPARATUS

Thu, 25 Aug 2016 08:00:00 EDT

A drive assist apparatus includes an arrival window time calculation unit configured to calculate an arrival window time before the vehicle arrives at a switching completion point, a driving concentration degree estimation unit configured to estimate a driving concentration degree of a driver based on a state of the driver when the arrival window time is equal to or shorter than a predetermined time, and a stimulation providing unit configured to provide a stimulus to the driver according to the driving concentration degree. In a case where the driving concentration degree is equal to or less than a threshold value set in advance, the stimulation providing unit provides a stimulus to the driver, which is stronger than that in a case where the driving concentration degree is greater than the threshold value, or provides a stronger stimulus to the driver in accordance with reduction in the driving concentration degree.



CLOUD-BASED CONTROL SYSTEM FOR UNMANNED AERIAL VEHICLES

Thu, 25 Aug 2016 08:00:00 EDT

A cloud-based system for controlling the use of unmanned aerial vehicles (UAVs) is used as the communication path between a pilot and his/her UAV, eliminating the direct communication between pilot and vehicle. The cloud-based UAV control system is configured to include both “control apps” associated with the actual flight of a UAV and “mission-specific apps” that include a set of instructions for a specific mission (i.e., performing energy audit of an industrial complex). The control apps preferably include flight regulations (as provided by the FAA, for example) that are used define “no-fly zones”. Other legitimate government (or non-government) agencies may provide “electric fence” control apps to the cloud-based system, thus preventing UAVs from entering protected areas. The UAVs interacting with the control system are intelligent, able to receive specific mission-based applications from the control system, allowing the UAVs to collect a wide variety of useful information.



GATEWAY SYSTEM AND METHOD

Thu, 25 Aug 2016 08:00:00 EDT

A vehicle control and gateway module comprising an electronic control module controlling one or more vehicle systems, a vehicle communications bus, a wireless communications module, an electronic gateway module acting as a translator of information between the vehicle communications bus and the wireless communications module, and a software program, whereby an operator using a remote mobile device can send and receive wireless commands to and from the vehicle with the electronic gateway module translating messages from one data protocol to the other as required.



SENSOR CALIBRATION SYSTEM

Thu, 25 Aug 2016 08:00:00 EDT

A calibration system for a machine is provided. The calibration system includes an unmanned aerial vehicle provided in association with a perception sensor. The unmanned aerial vehicle includes a target attached thereto. The unmanned aerial vehicle is configured to move along a predetermined path sweeping across a field of view of the perception sensor. The unmanned aerial vehicle is configured to present the target to the perception sensor, such that the target covers the field of view of the perception sensor based on the movement of the unmanned aerial vehicle along the predetermined path. The unmanned aerial vehicle is configured to determine and communicate an orientation and a position of the target to the calibration system.



SYSTEM FOR PROVIDING AIRCRAFT LANDING INSTRUCTIONS

Thu, 25 Aug 2016 08:00:00 EDT

A system for providing aircraft landing instructions is provided. The system comprises a memory component configured to store specifications for an aircraft. The system also comprises a controller configured to operate in either of a first mode or a second mode, wherein the first mode comprises a fly-along mode, and wherein the second mode comprises an emergency mode. In the fly-along mode, the controller is configured to generate, based on a received operator indication of a destination, a map, wherein the map comprises at least an indication of a current location of the aircraft and a destination indication. In the emergency mode, the controller is configured to generate a series of instructions for controlling and landing the aircraft, wherein the series of instructions are generated at least in part based on the stored specifications for the aircraft. The system also comprises a presentation component configured to provide the generated series of instructions to an operator of the aircraft.



SMART FUEL INDICATOR

Thu, 25 Aug 2016 08:00:00 EDT

An example method of providing a fuel alert to a user includes calculating a range for a transportation device based on a determined level of fuel and an average fuel efficiency. The method also includes for one or more candidate fuel stations, determining a distance of a route to each fuel station, and alerting a user when the range is less than any of the one or more distances.



APPARATUS AND METHODS OF DETERMINING PATHS THROUGH AN ELECTRONIC MAP

Thu, 25 Aug 2016 08:00:00 EDT

A plurality of routes through a navigable network represented by an electronic map are stored by a navigation device. Each route is defined as a plurality of point locations to be travelled between in a predefined order. The device receives a selection of one of the plurality of stored routes from a user, and determines a minimum cost path along segments of the electronic map between the plurality of point locations of the selected route. The minimum cost path traverses the plurality of point locations in an order based on the predefined order associated with the selected route. The device then outputs a set of navigation instructions to the user for guiding the user along the route.



System And Method For Vehicle Energy Estimation, Adaptive Control And Routing

Thu, 25 Aug 2016 08:00:00 EDT

In various embodiments the present disclosure provides a system and a method for estimating energy usage in a vehicle. The system includes hardware that perform certain operations that include receiving data associated with a route to be taken by the vehicle. The operations include determining, based on the data associated with the route and a state of the vehicle, an estimate corresponding to the energy that would be used by the vehicle when traversing a segment of the route.



NAVIGATION DEVICE

Thu, 25 Aug 2016 08:00:00 EDT

A navigation device includes a route searching unit for searching for a route leading to an arbitrary point on the basis of map data acquired by a map data acquiring unit, an HOV lane determining unit for determining whether or not an HOV lane is included in the route which the route searching unit has searched for, a predicted arrival time calculating unit for, when the HOV lane determining unit determines that an HOV lane is included in the route, calculating a predicted arrival time required to arrive at the arbitrary point by way of the route which is shorter than a time required to arrive at the arbitrary point by way of a route in which no HOV lane is included, and a display processing unit for displaying the predicted arrival time calculated by the predicted arrival time calculating unit.



Vehicle, System and Method for Forwarding Events

Thu, 25 Aug 2016 08:00:00 EDT

A vehicle includes a communication unit for the communication with an event management server, a navigation system for the output of at least one route, and a planning system. The planning system is configured to: a) retrieve a list, for a plurality of devices, particularly traffic light systems and/or signal groups of traffic light systems, the list including one identification respectively of the respective device and at least one position indication respectively of the respective device, b) compare the list with the route, in order to select at least one device from the list, c) for the subscription of events with respect to the selected device, send at least one subscription message to the event management server, the subscription message including the identifications of the selected devices.



METHOD AND SYSTEM OF ROUTE GUIDANCE FOR A TOWING VEHICLE

Thu, 25 Aug 2016 08:00:00 EDT

A method and system of route guidance for a vehicle alerts traffic restriction considering its towing status. The vehicle's towing status may be obtained either by automatically detecting a towed vehicle or manually setting such status by a user. When it is determined that the vehicle is towing another vehicle, traffic restriction information such as a speed limit and a dimension limit associated with each link in a route is obtained by accessing to a map database including such traffic restriction information. Based on the traffic restriction information, it is possible to provide the best route with a more correctly estimated time of arrival, while avoiding links which have dimension limits not suitable for the towing vehicle.



SUPPORT POINT MANAGEMENT SYSTEM, METHOD, AND PROGRAM

Thu, 25 Aug 2016 08:00:00 EDT

Support point management systems, methods, and programs acquire a support point registered as a subject of deceleration support and exclude the support point as the subject of deceleration support in a case a vehicle travels on a new road after having traveled through the support point without deceleration at the support point.



METHOD AND APPARATUS FOR CREATING A CLOTHOID ROAD GEOMETRY

Thu, 25 Aug 2016 08:00:00 EDT

A method, apparatus and computer program product are provided in order to create a clothoid road geometry. In the context of a method, a link geometry representative of a portion of a road network is converted into a plurality of link splines. The method also includes converting the plurality of link splines into respective sequences of one or more clothoids based upon curvature profiles of the link splines.



ADJUSTED NAVIGATION

Thu, 25 Aug 2016 08:00:00 EDT

A navigation device (1) comprises: a navigation state estimation unit (11) for repeatedly providing a navigation state estimate comprising at least one of the position, the velocity and the attitude of the device,a prediction unit (12) for providing, using the navigation state estimate, a predicted magnetic property value,a storage unit (13) for retrieving, using the navigation state estimate, a previously stored magnetic property value,a subtraction unit (14) for producing the difference of the predicted magnetic property value and the retrieved magnetic property value,a filter unit (15) for producing, using said difference, a navigation state correction value, anda correction unit (16) for correcting, using said navigation state correction value, a corrected navigation state estimate. The prediction unit (12) comprises: a magnetic measuring unit for repeatedly providing a measured magnetic field strength value, andan integrating unit for integrating the measured magnetic field strength values to produce the magnetic property value corresponding with the navigation state estimate.



METHOD FOR REDUCING THE AMOUNT OF FUEL USED BY AN ENGINE OF A MOTOR VEHICLE

Thu, 25 Aug 2016 08:00:00 EDT

A method is disclosed for reducing the fuel used by an engine of a motor vehicle. The method limits the speed at which the engine can rotate when a predefined engine upper speed limit NECOUL for the particular gear in which the motor vehicle is currently operating has been reached or limiting the road speed of the motor vehicle when a predefined vehicle road speed has been reached. The use of engine or road speed limiting combined with the alerting of the driver via an indicator that an upshift is desired to improve fuel economy encourages the driver to execute an upshift when.



CONTROLLING A HYDRAULIC PRESSURE OF A FLUID TRANSMISSION

Thu, 25 Aug 2016 08:00:00 EDT

A control device for controlling a hydraulic pressure of a fluid transmission includes a pressure sensor for detecting actual pressure values of the hydraulic pressure, an electronic control unit for generating a control signal as a function of the actual pressure values detected by the pressure sensor and a reference pressure signal delivered to the control unit, a power switch controlled by the control signal and a solenoid valve actuated by the power switch for generating the hydraulic pressure. The control device is configured as a compact electromagnetic unit. The electronic control unit is respectively connected to the pressure sensor and to the power switch by a direct electrical connection. A method for controlling a hydraulic pressure of a fluid transmission is also provided.



ACTIVE CANCELLATION OF BRAKE TORQUE VARIATION

Thu, 25 Aug 2016 08:00:00 EDT

Systems and methods for cancelling brake torque variation in a motor vehicle are disclosed. Signals indicative of brake torque variation are received at a controller. Based on the signals, a frequency associated with the indicated brake torque variation is determined. At least one of an output time and output volume of pressurized brake fluid is adjusted based on the frequency to cancel the indicated brake torque variation.



METHOD FOR OPERATING A COMMON RAIL INJECTION ARRANGEMENT FOR AN INTERNAL COMBUSTION ENGINE HAVE A STOP-START SYSTEM

Thu, 25 Aug 2016 08:00:00 EDT

Methods and system are provided for operating a fuel system of a stop-start engine system. In one example a method may comprise powering off a lift pump and maintaining a volume control valve in a closed position during an engine stop to maintain a fuel pressure within a fuel rail and one or more fuel injectors. The method may further comprise, in response to determining an engine start is desired, powering on the lift pump, initiating cylinder combustion, and operating a higher pressure pump (HPP) in an unpressurized mode when a fuel pressure upstream of the HPP is less than a threshold and switching to operating the HPP in a pressurized mode when the fuel pressure upstream of the HPP reaches the threshold.



METHOD FOR COOLING A DIRECT INJECTION PUMP

Thu, 25 Aug 2016 08:00:00 EDT

Methods and systems are provided for cooling a high pressure fuel pump. One method includes, when a spill valve is in a pass-through state, circulating fuel from a compression chamber of the high pressure fuel pump to a step room of the high pressure fuel pump. The fuel circulation through the step room may provide for a reduction in fuel temperature in the step room, and thus, the high pressure fuel pump.



CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE

Thu, 25 Aug 2016 08:00:00 EDT

A control device for an internal combustion engine is provided that can detect the adherence of deposits to a cylinder pressure sensor without subjecting the internal combustion engine to an impact or the like. A control device for an internal combustion engine equipped with a cylinder pressure sensor detects changes in the sensitivity of the cylinder pressure sensor. If the control device detects a decrease in the sensitivity of the cylinder pressure sensor after detecting an increase in the sensitivity of the cylinder pressure sensor, the control device determines that deposits are adhered to the cylinder pressure sensor.



SIGNAL RECORDING OF KNOCKING CONDITIONS USING A KNOCK SENSOR

Thu, 25 Aug 2016 08:00:00 EDT

A system including a controller. The controller is configured to obtain a signal from a knock sensor coupled to a reciprocating device. The controller is configured to analyze the signal to determine a trigger event occurrence based on the signal having an abnormal signature. The abnormal signature is associated with a knocking of the reciprocating device. The controller is further configured to generate a first audio file of a first audio recording to store in a memory of the controller. The first audio recording provides an indication of the knocking of the reciprocating device.



METHOD AND SYSTEM FOR SUPPLYING DIESEL TO A MOTOR VEHICLE

Thu, 25 Aug 2016 08:00:00 EDT

A method controls a system for supplying diesel fuel on a motor vehicle. The system includes a fuel tank, a first pump that is a low-pressure pump taking fuel from the tank and delivering the fuel to a second pump that is a high-pressure pump. The method includes controlling the first pump to regulate the quantity of fuel provided as a function of the needs of the second pump, and determining a geographical position of the vehicle. The first pump is controlled to a maximum pressure level when the vehicle is in one of several predefined probable stopping zones.



METHODS AND SYSTEMS FOR ESTIMATING AN AIR-FUEL RATIO WITH A VARIABLE VOLTAGE OXYGEN SENSOR

Thu, 25 Aug 2016 08:00:00 EDT

Methods and systems are provided for estimating an exhaust air/fuel ratio based on outputs from an exhaust oxygen sensor. In one example, a method may include adjusting engine operation based on an air-fuel ratio estimated based on an output of the exhaust oxygen sensor and a learned correction factor. For example, the oxygen sensor may operate in a variable voltage mode in which a reference voltage of the oxygen sensor may be adjusted between a lower first voltage and a higher second voltage, and the learned correction factor is based on the second voltage.



METHOD OF CONTROLLING THE STOPPING AND STARTING OF AN ENGINE

Thu, 25 Aug 2016 08:00:00 EDT

A method of stopping and starting an engine of a vehicle having a manually operated clutch system including a clutch for driveably connecting the engine to a transmission includes controlling stopping and starting of the engine based on first and second clutch engagement thresholds selected based on whether the clutch is being engaged or disengaged. The first threshold corresponds to a more disengaged state of the clutch than the second threshold. The first threshold is used when the clutch is being disengaged to decide whether the engine can be shut down while the transmission remains in-gear. The second threshold is used when the clutch is being engaged to decide whether the engine can be started while the transmission remains in-gear. By using a less conservative threshold for starting the engine than stopping the engine, the number of inhibited restarts is reduced.



CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE

Thu, 25 Aug 2016 08:00:00 EDT

It is determined whether the execution conditions for the injection quantity variation correction are met, based on whether all of following conditions are satisfied: the engine operation is the stationary operation, the injection quantity of a fuel injection valve falls within the predetermined range, and the fuel pressure falls within the predetermined range. When the execution conditions are met, the fuel pressure decrease caused by the fuel injection of the fuel injection valve for each cylinder is calculated based on the output of a fuel pressure sensor, and the injection quantity variation correction to correct the injection quantity variation of the fuel injection valve for each cylinder is performed based on the fuel pressure decrease caused by the fuel injection of each cylinder. Thus, the fuel pressure decrease can be accurately calculated, the injection quantity variation of each cylinder is precisely corrected.



VEHICLE METHOD FOR BAROMETRIC PRESSURE IDENTIFICATION

Thu, 25 Aug 2016 08:00:00 EDT

A vehicle method for barometric pressure identification, including adjusting engine operation responsive to barometric pressure, the barometric pressure based on a pressure change at a sector of the fuel system when the sector is sealed with the vehicle travelling. The method may utilize a pressure change at the sealed sector of the fuel system, such as a sealed fuel tank, to identify barometric pressure, even with the engine off for extended durations of vehicle travel. As such, in a hybrid-vehicle application, including during hill descents in which the engine is maintained off, barometric pressure can still be updated.



METHOD FOR REDUCING AIR FLOW IN AN ENGINE AT IDLE

Thu, 25 Aug 2016 08:00:00 EDT

Methods and systems are provided for controlling air ingestion in an engine during idle conditions. One example approach includes adjusting an opening of a common shut-off valve via an electronic controller, the common shut-off valve regulating each of motive flow through an aspirator and crankcase ventilation (CV) flow from a crankcase. As such, the common shut-off valve may be closed by the electronic controller during engine idle to cease each of the motive flow through the aspirator and the CV flow from the crankcase.