Subscribe: Untitled
http://www.freepatentsonline.com/rssfeed/rsspat060.xml
Added By: Feedage Forager Feedage Grade B rated
Language: English
Tags:
air  combustion  energy  engine  exhaust gas  exhaust  flow  fluid  gas  heat  includes  reducing agent  system  turbine 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: Untitled

Untitled





 



Throttleable exhaust venturi

Tue, 08 Dec 2015 08:00:00 EST

A throttleable exhaust venturi is described herein that generates strong suction pressures at an exhaust outlet by accelerating an incoming ambient fluid stream with the aid of a venturi to high gas velocities and injecting a combustion exhaust stream into the ambient fluid stream at an effective venturi throat. A mixing element downstream of the venturi throat ensures that the mixed fluid stream recovers from a negative static pressure up to local atmospheric pressure. A physical and the effective throat of the venturi are designed to promote mixing and stabilize the ambient fluid flow to ensure that high velocity is achieved and the effective venturi is operable over a variety of combustion exhaust stream mass flow rates.



Reducing agent injection valve abnormality detection unit and reducing agent supply apparatus

Tue, 29 Sep 2015 08:00:00 EDT

[Problem] To provide a reducing agent injection valve abnormality detection unit capable of precisely determining whether or not a reducing agent injection valve is abnormally stuck, and a reducing agent supply apparatus. [Means for Resolution] The reducing agent injection valve abnormality detection unit includes: a reducing agent collection control means for, when an instruction for opening the reducing agent injection valve has been issued, performing control so that the reducing agent in the reducing spent passage is collected into the storage tank; a reducing agent filling control means for, when an instruction for closing the reducing agent injection valve has been issued after the control for collecting the reducing agent, performing control so that the reducing agent passage is refilled with the reducing agent; and an abnormality determination means for determining whether or not the reducing agent injection valve is abnormally stuck, based on change in the pressure in the reducing agent passage during the control for refilling with the reducing agent.



Thermoelectric generator of vehicle

Tue, 29 Sep 2015 08:00:00 EDT

A thermoelectric generator apparatus of a vehicle may include a high temperature member, through which exhaust gas passes, a low temperature member, which maintains a temperature lower than a temperature of the high temperature member, and which includes a first coolant pipe holder supporting one of coolant pipes, a heat transfer plate which extends from the first pipe holder and may be located opposite to a corresponding high-temperature member, and a second coolant pipe holder formed on the other side of the heat transfer plate and supporting another of the coolant pipes, and a thermoelectric module disposed between the high temperature member and the low temperature member.



Exhaust bypass flow control for exhaust heat recovery

Tue, 22 Sep 2015 08:00:00 EDT

An exhaust system for an engine comprises an exhaust heat recovery apparatus configured to receive exhaust gas from the engine and comprises a first flow passage in fluid communication with the exhaust gas and a second flow passage in fluid communication with the exhaust gas. A heat exchanger/energy recovery unit is disposed in the second flow passage and has a working fluid circulating therethrough for exchange of heat from the exhaust gas to the working fluid. A control valve is disposed downstream of the first and the second flow passages in a low temperature region of the exhaust heat recovery apparatus to direct exhaust gas through the first flow passage or the second flow passage.



Exhaust purification system of internal combustion engine

Tue, 22 Sep 2015 08:00:00 EDT

In an internal combustion engine, inside of an engine exhaust passage, a hydrocarbon feed valve (17), exhaust purification catalyst (13), and intermediate NOx adsorption catalyst (15) are arranged. The intermediate NOx adsorption catalyst (15) adsorbs nitrogen-containing intermediate and NOx which are exhausted from the exhaust purification catalyst (13). To make the nitrogen-containing intermediate or NOx which is adsorbed at the intermediate NOx adsorption catalyst (15) desorb from it, the concentration of hydrocarbons flowing into the exhaust purification catalyst (13) is made to vibrate within a predetermined range of amplitude of 200 ppm or more and within a predetermined range of period of 5 seconds or less, whereby NOx which is contained in exhaust gas is removed at the exhaust purification catalyst (13) while the heat of oxidation reaction of the hydrocarbons is used to make the intermediate NOx adsorption catalyst (15) rise in temperature.



Exhaust purification system of internal combustion engine

Tue, 11 Aug 2015 08:00:00 EDT

An exhaust purification system of an internal combustion engine is provided with a hydrocarbon feed valve arranged in an engine exhaust passage and an exhaust purification catalyst for causing NOX contained in exhaust gas and reformed hydrocarbons to react. The exhaust purification catalyst reduces NOX if a concentration of inflowing hydrocarbons vibrates within a predetermined range of amplitude and within a predetermined range of period and increases the amount of storage of NOX if the vibration period of the concentration of hydrocarbons longer is than a predetermined range. When hydrocarbons are being fed from the hydrocarbon feed valve within the predetermined range of amplitude and the predetermined range of period, if the amount of adsorption of hydrocarbons in the exhaust purification catalyst exceeds a predetermined judgment value of the adsorption amount, at least one of reducing amount of feed of hydrocarbons and lengthening feed interval of hydrocarbons is performed.



Method and apparatus for combusting syngas within a combustor

Tue, 14 Jul 2015 08:00:00 EDT

A method for operating a combustor is provided. The method includes supplying a predetermined amount of a first gaseous fuel to the combustor, wherein the first gaseous fuel has a first Modified Wobbe Index (MWI) and a first fuel reactivity, and supplying a predetermined amount of a second gaseous fuel to the combustor, wherein the second gaseous fuel has a second MWI that is lower than the first MWI and a second fuel reactivity that is higher than the first fuel reactivity. The method also includes mixing the first and second gaseous fuels together to form a blended gaseous fuel, and injecting the blended gaseous fuel into the combustor.



Programmable reverse thrust detent system and method

Tue, 26 May 2015 08:00:00 EDT

A reverse thrust detent system for an aircraft includes a throttle quadrant having an intermediate reverse thrust detent position, a reverse thrust scheduling system interfacing with the throttle quadrant, at least one aircraft engine interfacing with the reverse thrust scheduling system and a programmable input interfacing with the reverse thrust scheduling system and adapted to receive an engine reverse thrust setting. The reverse thrust scheduling system is adapted to operate the at least one aircraft engine according to the engine reverse thrust setting responsive to actuation of the intermediate reverse thrust detent position of the throttle quadrant. A reverse thrust detent method for an aircraft is also disclosed.



Exhaust gas purification apparatus of an internal combustion engine

Tue, 26 May 2015 08:00:00 EDT

A laminated body composed of a holding member and an inner cylinder is arranged between a heat generation element, which is electrically energized to generate heat, and a case which covers the heat generation element, and the inner cylinder has an upstream side end portion extended to a more upstream side than an upstream side end face of said heat generation element and an upstream side end face of said holding member to form an extension portion, which is formed with a protruding portion protruding to an inner side in a diametrical direction. A flow of an exhaust gas, which flows backwards after colliding with the heat generation element, will be obstructed by said protruding portion. As a result, the backflow exhaust gas stops flowing into a gap between the case and the inner cylinder.



Reductant fill system

Tue, 26 May 2015 08:00:00 EDT

A reductant fill system is provided. A reductant tank is configured to store a reductant. A receiver is configured to receive a supply of the reductant from an off-board reservoir. A first valve is in communication with the reductant tank and is configured to control a reductant flow into the reductant tank. A reductant supply line is in fluid communication with the receiver. The reductant supply line is configured to provide the reductant flow to the first valve. The reductant level sensor is configured to generate a signal based on a level of reductant in the reductant tank. A controller is communicably coupled to the reductant level sensor. The controller is configured to purge a stranded reductant in the reductant supply line, based on the signal generated by the reductant level sensor.



NOx feedback for combustion control

Tue, 26 May 2015 08:00:00 EDT

A method for controlling combustion in an engine is provided. The method comprises under a first condition, adjusting an EGR amount of a total cylinder charge in response to engine out NOx levels being below a first threshold. In this way, NOx levels may be used as feedback to control combustion stability.



Charge air cooler, and intake manifold including the same

Tue, 26 May 2015 08:00:00 EDT

A charge air cooler includes a housing and a heat exchanger core positioned within the housing. The heat exchanger core includes a first core section, a second core section, and a centrally located section positioned between the first core section and the second core section. The charge air cooler also includes a plurality of coolant circuits. Each coolant circuit extends through at least one of the first and second core sections. The charge air cooler further includes a coolant inlet extending from the centrally located section to deliver coolant to the plurality of coolant circuits, and a coolant outlet extending from the centrally located section to receive coolant from the plurality of coolant circuits. The charge air cooler also includes a fastener extending through the centrally located section of the core to secure the core to the housing.



Charge air cooler, and intake manifold including the same

Tue, 26 May 2015 08:00:00 EDT

An air intake manifold for an engine includes an air inlet to receive a flow of compressed charge air, and multiple runners to deliver cooled compressed charge air to corresponding combustion cylinders of the engine. A charge air cooler is arranged within the intake manifold between the air inlet and the runners, and includes a first core section and a second core section. The first and second core sections are arranged fluidly in parallel with respect to the flow of compressed charge air, so that the charge air is divided into a first portion that is substantially directed through the first core section to a first subset of the runners, and a second portion that is substantially directed through the second core section to a second subset of the runners.



Air cooler and method for operation of an air cooler

Tue, 26 May 2015 08:00:00 EDT

An air cooler line is provided. The air cooler lines includes a first air cooler having a plurality of air flow conduits, each of the air flow conduits including an inlet, and a first air flow deflector extending across peripheral portions of the inlets and fixedly coupled to the air flow conduits and a second air cooler having a plurality of air flow conduits, each of the air flow conduits including an inlet, and a second air flow deflector extending across peripheral portions of the inlets and fixedly coupled to the air flow conduits, the second air flow deflector differing in at least one of size and geometry than the first air flow deflector.



Systems and methods for driving an oil cooling fan of a gas turbine engine

Tue, 26 May 2015 08:00:00 EDT

Systems and methods for driving an oil cooling fan (36) of a gas turbine engine (10) during different modes of operation of the gas turbine engine (10) are described. A system may include a coupling device (40) configured to: transmit motive power from a power turbine shaft (22) of the gas turbine engine (10) to the oil cooling fan (36) during a first mode of operation where the power turbine shaft (22) is turning, and to decouple the oil cooling fan (36) from the power turbine shaft (22) during a second mode of operation where the power turbine shaft (22) is prevented from turning. An alternate source (42) of motive power may be configured to drive the oil cooling fan (36) during the second mode of operation.



Gas turbine engine buffer cooling system

Tue, 26 May 2015 08:00:00 EDT

A gas turbine engine includes a heat exchanger, a bearing compartment, and a nozzle assembly in fluid communication with the bearing compartment. The heat exchanger exchanges heat with a bleed airflow to provide a conditioned airflow. The bearing compartment is in fluid communication with the heat exchanger. A first passageway communicates the conditioned airflow from the heat exchanger to the bearing compartment. A second passageway communicates the conditioned airflow from the bearing compartment to the nozzle assembly.



Gas turbine engine thermal management system

Tue, 26 May 2015 08:00:00 EDT

A gas turbine engine according to an exemplary embodiment of this disclosure, among other possible things includes a fan. A geared architecture is configured for driving the fan. A turbine section is configured for driving the geared architecture. A thermal management system that includes a first fluid circuit and a second fluid circuit that manage heat generated in at least a portion of the gas turbine engine. A first heat exchanger is incorporated into each of the first fluid circuit and the second fluid circuit. A second heat exchanger is incorporated into the first fluid circuit. A valve controls an amount of a first fluid that is communicated to the first heat exchanger and the second heat exchanger. A controller is configured to control a positioning of the valve. The amount of the first fluid communicated to the first heat exchanger is based on a first characteristic of a second fluid and the amount of the first fluid communicated to the second heat exchanger is based on a second characteristic of the second fluid. A method and a system are also disclosed.



Cooling apparatus for combustor transition piece

Tue, 26 May 2015 08:00:00 EDT

Disclosed is an apparatus for cooling a transition piece of a combustor includes at least one wrapper disposed at the transition piece located outboard of the transition piece. At least one support boss is located between the at least one wrapper and the transition piece. The at least one support boss, the at least one wrapper, and transition piece define at least one cooling flow channel for directing flow for cooling the transition piece. A method of cooling a transition piece of a combustor includes flowing cooling flow into at least one cooling flow channel located at the transition piece, the at least one cooling flow channel defined by the transition piece, at least one wrapper located at the transition piece and located outboard of the transition piece, and at least one support boss located between the at least one wrapper and the transition piece. The cooling flow is directed via the at least one support boss and flows across an outer surface of the transition piece thereby cooling the transition piece.



Combustors with quench inserts

Tue, 26 May 2015 08:00:00 EDT

A combustor for a turbine engine is provided. The combustor includes a first liner and a second liner forming a combustion chamber with the first liner, the combustion chamber configured to receive an air-fuel mixture for combustion therein. The first liner defining an air admission hole for directing a first jet of pressurized air into the combustion chamber, and the air admission hole may have a non-circular shape. The combustor further includes an insert positioned within the air admission hole to guide the first jet through the air admission hole and into the combustion chamber.



Convolution seal for transition duct in turbine system

Tue, 26 May 2015 08:00:00 EDT

A turbine system is disclosed. In one embodiment, the turbine system includes a transition duct. The transition duct includes an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The transition duct further includes an interface feature for interfacing with an adjacent transition duct. The turbine system further includes a convolution seal contacting the interface feature to provide a seal between the interface feature and the adjacent transition duct.



Fuel gas cooling system for combustion basket spring clip seal support

Tue, 26 May 2015 08:00:00 EDT

A fuel gas cooling system for a combustion basket spring clip seal support is disclosed. The fuel gas cooling system may be formed from one or more fuel gas supply channels terminating proximate to a spring clip at the intersection between a combustor basket and a transition section such that fuel gas may be supplied to the hot gas path proximate to the intersection between the combustor basket and the transition section. The fuel gas supply channel may create an intermediate fuel gas burn at this intersection, which may reduce the firing temperature at the fuel nozzles and reduce NOx emissions.



Gas turbine combustor

Tue, 26 May 2015 08:00:00 EDT

A gas turbine combustor includes inner and outer liners that are concentric and cylindrical, and an end liner closing between upstream ends thereof and forming a hollow cylindrical combustion chamber therein, and a swirling air flow forming device introducing combustion air about the end liner from outside and forming a swirling air flow, a fuel ejector ejecting fuel in the swirling direction to form a premixed swirling flow, and an igniter igniting the premixed swirling flow to form a tubular flame surface. The combustion chamber includes a primary combustion chamber, a secondary combustion chamber disposed downstream of the primary combustion chamber, and an annular restrictor reducing the outer diameter of the primary combustion chamber and disposed therebetween. A diluting air hole, supplying diluting air along a flow of the combustion gas passing through the restrictor, is disposed downstream of the restrictor in the inner liner.



System and method for recovery of waste heat from dual heat sources

Tue, 26 May 2015 08:00:00 EDT

A waste heat recovery system includes a heat recovery cycle system coupled to at least two separate heat sources having different temperatures. The heat recovery cycle system is coupled to a first heat source and at least one second heat source. The heat recovery cycle system is configured to circulate a working fluid. The at least one second heat source includes a lower temperature heat source than the first heat source. The working fluid is circulatable in heat exchange relationship through a first heat exchange unit, a second heat exchange unit for heating the working fluid in the heat recovery cycle system. The first heat exchange unit is coupled to the at least one second heat source to heat at least a portion of a cooled stream of working fluid to a substantially higher temperature.



Apparatuses and methods for thermodynamic energy transfer, storage and retrieval

Tue, 26 May 2015 08:00:00 EDT

Systems and methods for transferring and optionally storing and/or retrieving thermal energy are disclosed. The systems and methods generally include a heat engine and a heat pump, the heat engine including first isothermal and gradient heat exchange mechanisms, and the heat pump including second isothermal and gradient heat exchange mechanisms. The heat engine and the heat pump exchange heat with each other countercurrent across the first and second gradient heat exchange mechanisms, the first isothermal heat exchange mechanism transfers heat to an external heat sink, and the second isothermal heat exchange mechanism receives heat from an external heat source.



Hybrid thermal cycle with independent refrigeration loop

Tue, 26 May 2015 08:00:00 EDT

Work is produced from heat in a continuous cycle. A flow of first working fluid is provided to a high pressure boiler to produce a flow of first working fluid vapor. A second working fluid in vaporous form is compressed, after which a third working fluid is formed by mixing the first working fluid vapor and the second working fluid. Thermal energy is transferred directly between the first and second working fluids in the mixing chamber exclusive of any intervening structure. A refrigeration loop containing a fourth working fluid extracts thermal energy from a low grade thermal energy source and moves the thermal energy to the first working fluid and/or the second working fluid.



Method of operating a piston expander of a steam engine

Tue, 26 May 2015 08:00:00 EDT

A method of operating a piston expander, including introducing live steam into a cylinder space via an inlet valve; expanding the live steam during a power stroke in which a piston moves from an upper dead center position to a lower dead center position; opening an outlet opening as soon as the piston is in the region of the lower dead center position; after the piston reaches the lower dead center position, conveying the expanded steam out of the outlet opening and into a steam discharge; and subsequently closing the outlet opening before the piston in an exhaust stroke reaches the lower dead center position.



Solar thermal electricity generating systems with thermal storage

Tue, 26 May 2015 08:00:00 EDT

Thermal energy can be stored in a fluid-based thermal storage system for later use. The stored thermal energy may be derived from steam generated using insolation in a steam-based solar power system. The thermal storage system can store energy when insolation is generally available. Alternatively or additionally, the thermal energy may be derived from electricity from the electrical grid. For example, the thermal energy can store energy when the electrical grid has excess electricity available for storage. At a later time, the energy stored in the thermal storage system can be released to heat pressurized water or steam in addition to or in place of steam generated by the insolation. For example, the stored thermal energy may be used in preheating the solar power system during startup, in supplementing steam output of the solar power system, or to replace steam generation during low insolation periods.



Thermal vector system for solar concentration power plant

Tue, 26 May 2015 08:00:00 EDT

The present invention relates to a thermal vector system for solar concentration plants, in particular for parabolic trough solar concentration plants, both for industrial and domestic use, comprising a solid state thermal vector. A preferred solar concentration plant comprises one or more solar collectors (1), an heat exchanger (3-5), a heat accumulator (2) and a connecting pipe circuit, in which a solid state thermal vector is pushed through said circuit by mechanical means (6).



System for extracting energy from wind and thermal gradients

Tue, 26 May 2015 08:00:00 EDT

An inverted funnel-shaped columnar tower (115) includes a window region (120), a heat absorbing surface (130), an air entrance (116) and exit (117). Solar energy passes through the window region and heats the heat absorbing surface. A plurality of fans (145), each connected to a generator (150), are suspended within the tower and extract energy from convectively rising air, generating electricity. A fan (160) outside the tower intercepts wind and turns an internal fan (145′) that aids the convective flow, providing a self-starting feature. A plurality of rotors (100) with wings (705) are connected in groups to generators (725) and all are arranged adjacent the tower. The rotors intercept wind energy and deliver it to the generators for conversion to electricity. The rotors include a flap (800) that predetermines the direction of rotation of the rotor, providing a second self-starting feature. The convection and wind capture functions operate independently.



Control apparatus for internal combustion engine equipped with supercharger

Tue, 26 May 2015 08:00:00 EDT

A first supercharger and a second supercharger are disposed in series in intake and exhaust passages. In a B region in which both the supercharging effects of the first and second superchargers are utilized, the opening of an exhaust control valve disposed in a passage for bypassing the turbine of the first supercharger is set to an intermediate degree, and the opening of an intake control valve disposed in a passage for bypassing the compressor of the first supercharger is set to the minimum. In a C region in which the supercharging effect of only the second supercharger is utilized, both the openings of the exhaust control valve and the intake control valve are set to the maximum. When the control region shifts from B region to C region as result of acceleration of the vehicle, the fuel injection amount is reduced over a predetermined period immediately after the shift.



Flywheel assembly for a turbocharger

Tue, 26 May 2015 08:00:00 EDT

A flywheel assembly for a turbocharger a rotatable flywheel shaft that is separate from a turbocharger shaft, and a flywheel body coupled to the flywheel shaft. A flywheel sensor determines a flywheel operating parameter and supplies a flywheel feedback signal indicative of the flywheel operating parameter, and a flywheel clutch selectively couples the flywheel shaft to the turbocharger shaft. A controller operates the flywheel clutch based on the flywheel feedback signal. The flywheel shaft and flywheel body may be disposed in a flywheel housing that is separate and spaced from a turbocharger housing.



Turbocharger arrangement for an internal combustion engine

Tue, 26 May 2015 08:00:00 EDT

A turbocharger arrangement in an internal combustion engine is provided. The turbocharger arrangement includes a turbocharger housing surrounding a sealed inner space and a shaft extending through the turbocharger housing. The turbocharger arrangement further includes a turbine wheel arranged on the shaft and driving a compressor unit, a bearing arrangement mounting the shaft in the turbocharger housing, an oil supply device lubricating the bearing arrangement, and a pressure changing unit in fluidic communication with the sealed inner space configured to adjust the pressure in the sealed inner space based on engine operating conditions.



Device for actuating a flap

Tue, 26 May 2015 08:00:00 EDT

A device for actuating a flap, in particular a wastegate flap in an exhaust gas turbocharger for an internal combustion engine, includes a control rod, which can be moved by an actuator substantially in an axial direction and is guided in a fist gate via a first pin at the side thereof facing away from the actuator. A carriage is articulated on the first pin and is guided in the first gate via a second pin on the side facing away from the first pin, wherein a pivot lever is articulated on the second pin and, on the side facing away from the second pin, the pivot lever is rotatably mounted in a machine housing, preferably a turbine housing, and the flap is arranged on the pivot lever on the side facing away from the second pin. By way of the articulated design, a non-linear adjustment of the flap is possible.



Master cylinder device

Tue, 26 May 2015 08:00:00 EDT

A master cylinder device includes: a first pressurizing piston including a main body portion which defines a first pressurizing chamber for pressurizing a brake fluid, and a flange portion which is formed around an outer circumference of the main body portion and in front of which there is defined an opposing chamber; and an input piston which can be shrunk by operating a brake pedal. The master cylinder device further includes an electromagnetic open/close valve for making the opposing chamber and the inter-piston chamber communicate with a reservoir, and an electromagnetic open/close valve for prohibiting the shrink of the input piston. The master cylinder device with such a structure allows a pressurization of the brake fluid depending on an operation force in a state in which the shrink of the input piston is prohibited.



Method of controlling a thermal energy harvesting system

Tue, 26 May 2015 08:00:00 EDT

A method of controlling an energy harvesting system that converts excess thermal energy into mechanical energy and includes a Shape Memory Alloy (SMA) member, includes obtaining current operational parameters of the energy harvesting system, such as a maximum temperature, a minimum temperature and a cycle frequency of the SMA member. The current operational parameters are compared to a target operating condition of the energy harvesting system to determine if the current operational parameters are within a pre-defined range of the target operating condition. If the current operational parameters are not within the pre-defined range of the target operating condition, then a heat transfer rate to, a heat transfer rate from or a cycle frequency of the SMA member is adjusted to maintain operation of the energy harvesting system within the pre-defined range of the target operating condition to maximize efficiency of the energy harvesting system.



Hydrostatic transmission apparatus making improved braking possible

Tue, 26 May 2015 08:00:00 EDT

Hydrostatic transmission apparatus having an elementary motor with a feed enclosure and a discharge enclosure; a displacement selector suitable for taking up a bypass position, in which the feed and discharge enclosures are interconnected via a bypass link; and constriction means for constricting said bypass link. When the selector is in the bypass position, the constriction means can be activated to restrict the flow of fluid through the bypass link when the discharge pressure in the discharge enclosure exceeds a constriction threshold, said threshold being a function of a control pressure prevailing in a control chamber.



Power generator

Tue, 26 May 2015 08:00:00 EDT

The power plant disclosed is an engine that derives its usefulness in the pursuit of energy generation by utilizing hydrostatic pressure differentials found or created in various liquids, gases or solutions, such as but not limited to water and air. It is generally provided as a two-stroke piston cycle power generating system, wherein the actions of the pistons perform work or replenish working fluid from a lower head to a higher head, and can be utilized to generate power, pump fluids, or perform work, for example. Multiple power generating systems are interconnected to provide continuous and constant power generation through a penstock and turbine system.



Method for exhaust-gas aftertreatment with reduced emissions

Tue, 26 May 2015 08:00:00 EDT

An exhaust-gas recirculation device for an internal combustion engine, a method for controlling an exhaust-gas recirculation device, a drive for a motor vehicle having an exhaust-gas recirculation device, and a motor vehicle having a drive of said type are described. The exhaust-gas recirculation device comprises a turbine, and an exhaust-gas aftertreatment device. The exhaust-gas aftertreatment device has an inlet connected to an outlet of the turbine, and is configured to reduce a pollutant content in the exhaust-gas flow. An electric grid heater is arranged between the outlet of the turbine and the inlet of the exhaust-gas aftertreatment device and is configured to heat the exhaust-gas flow.



Hydraulic working machine

Tue, 26 May 2015 08:00:00 EDT

An exhaust gas temperature raising processing system, which increases a load acting on an engine to raise the exhaust gas temperature, includes an electric assist motor connected to the engine and an inverter for adjusting a torque of the electric assist motor. It also includes a main controller having a first determination unit for determining whether or not an actuator control valve is in a non-feed state and a second determination unit for determining whether or not clogging has occurred on a filter of an exhaust gas purification system. When the non-feed state is determined by the first determination unit and clogging is determined to have occurred on the filter by the second determination unit, the main controller drives the electric assist motor to generate electric power such that a load acting on the engine is increased.



Delivery device and tank configuration for a reducing agent and motor vehicle having a tank configuration

Tue, 26 May 2015 08:00:00 EDT

A delivery device for a reducing agent includes a metallic housing, at least one externally mounted metal suction pipe and an external pressure port. A metallic base plate, at which at least one pump and ducts are provided, is disposed inside the housing. The suction pipe, the housing, the metallic base plate, and the pump are in heat-conducting contact with each other. An elongate heating element is disposed next to the suction pipe. A tank configuration for a reducing agent and a motor vehicle having a tank configuration, are also provided.



Ammonia sensor control of an SCR aftertreatment system

Tue, 26 May 2015 08:00:00 EDT

A system includes an engine, an exhaust conduit for the engine, a first SCR catalyst fluidly coupled to the exhaust conduit, and a second SCR catalyst fluidly coupled to the exhaust conduit at a position downstream of the first SCR catalyst. The system further includes an ammonia sensor positioned between the first and second SCR catalysts. A reductant doser is positioned upstream of the first SCR catalyst. The system includes a controller that determines an amount of NH3 present from the NH3 sensor, and computes an actuator response function from at least one operating condition of the first SCR catalyst. The actuator response function includes a reductant injector response as a function of the amount of NH3, and the actuator response function includes a response discontinuity. The controller further determines a reductant injection amount from the amount of NH3 and the actuator response function, and provides a reductant injector command.



Exhaust purification system of internal combustion engine

Tue, 26 May 2015 08:00:00 EDT

In an internal combustion engine, inside an engine exhaust passage, a hydrocarbon feed valve (15) and an exhaust purification catalyst (13) are arranged. The carrier (50) of the exhaust purification catalyst (13) is formed from a crystallized composite oxide of aluminum and an alkali earth metal. On this carrier (50), precious metal catalysts (51, 52) are carried. The concentration of hydrocarbons which flow into the exhaust purification catalyst (13) is made to vibrate by within a predetermined range of amplitude of a 200 ppm or more and within a predetermined range of period of 5 second or less, whereby the NOx which is contained in exhaust gas is reduced at the exhaust purification catalyst (13).



Arrangement and method for storing a reduction agent and supplying it to an exhaust gas system of an combustion engine and an internal combustion engine including such a system

Tue, 26 May 2015 08:00:00 EDT

In a supply arrangement for supplying a solution containing a reducing agent, in particular urea, to an exhaust gas system of an internal combustion engine wherein a supply line extending from a storage tank to an injector which is connected to the exhaust gas system includes an operating tank and a dosing arrangement, a return line extends between the dosing arrangement and the storage tank and the dosing arrangement includes a directional valve for directing solution to the injector during a first operating mode in which the engine is operating and, in a second operating mode in which the engine is shut down, directing the solution back to the storage tank for emptying the operating tank.



Method for operating an exhaust emission control system having a SCR-catalyst and an upstream oxidation catalyst exhaust emission control component

Tue, 26 May 2015 08:00:00 EDT

A method for operating an exhaust emission control system of a motor vehicle internal combustion engine, in the exhaust gas line of which an oxidation-catalytically active exhaust emission control component is arranged upstream of a SCR-catalyst is provided. An ageing state of the oxidation-catalytically active exhaust emission control component is determined by correlating a hydrocarbon fraction present in the exhaust emission upstream of the oxidation-catalytically active exhaust emission component with a simultaneous nitrogen oxide conversion of the SCR-catalyst.



Systems and methods for aftertreatment system diagnostics

Tue, 26 May 2015 08:00:00 EDT

Methods and systems for diagnosing inadequate performance and/or degradation of one or more components of an aftertreatment system are disclosed, the components including at least an oxidation catalyst that is positioned upstream from an SCR catalyst. A performance degradation analysis of the oxidation catalyst is based on a comparison of measurements received from a first nitrous oxide (NOx) sensor located upstream of the oxidation catalyst and a second NOx sensor located downstream from the oxidation catalyst.



Systems, methods, and apparatus for providing a multi-fuel hybrid rocket motor

Tue, 26 May 2015 08:00:00 EDT

Certain embodiments of the invention may include systems, methods, and apparatus for providing a multi-fuel hybrid rocket motor. According to an example embodiment of the invention, a method is provided for producing a multi-fuel hybrid motor. The method can include forming a body, where the body includes one or more intake ports; one or more exit nozzles; one or more channels connecting the one or more intake ports with the one or more exit nozzles; and a plurality of cavities comprising segment walls in communication with the one or more channels. The method also includes depositing a propellant fuel within the plurality of cavities, wherein at least a portion of the propellant fuel is exposed to the one or more channels and wherein the propellant fuel has a higher burn consumption rate than the segment walls.



Fan case thrust reverser

Tue, 26 May 2015 08:00:00 EDT

A fan case of a gas turbine engine includes a fan blade containment section defined about an engine axis, a thrust reverser cascade section downstream of the blade containment section and a Fan Exit Guide Vane section downstream of the thrust reverser cascade section.



LPC flowpath shape with gas turbine engine shaft bearing configuration

Tue, 26 May 2015 08:00:00 EDT

A gas turbine engine includes a core housing that includes an inlet case and an intermediate case that respectively provide an inlet case flow path and an intermediate case flowpath. A shaft provides a rotational axis. A hub is operatively supported by the shaft. A rotor is connected to the hub and supports a compressor section. The compressor section is arranged in a core flow path axially between the inlet case flow path and the intermediate case flow path. The core flowpath has an inner diameter and an outer diameter. At least a portion of inner diameter has an increasing slope angle relative to the rotational axis. A bearing is mounted to the hub and supports the shaft relative to one of the intermediate case and the inlet case.



Thrust generator

Tue, 26 May 2015 08:00:00 EDT

A method, system and apparatus for generating thrust. The method, system and apparatus can include a fuel that may be accelerated into one or more openings on a rotating wheel. The rotating wheel, which may be balanced, may then have a temporary increase in mass in one location on the wheel. Additionally, the fuel that is accelerated into one or more openings in the wheel may be decelerated and may exert an outward force on the wheel. This generation of force can be repeated and increased to provide thrust.



Thruster grid clear circuits and methods to clear thruster grids

Tue, 26 May 2015 08:00:00 EDT

Thruster grid clear circuits and methods to clear thruster grids are disclosed. An example apparatus includes a low voltage grid clear circuit to apply first energy to a grid at a first voltage, and a high voltage grid clear circuit to detect a failure of the applied energy to clear a short circuit condition of the grid and to apply second energy to the grid at a second voltage higher than the first voltage.