Subscribe: Untitled
http://www.freepatentsonline.com/rssfeed/rsspat073.xml
Added By: Feedage Forager Feedage Grade B rated
Language: English
Tags:
apparatus  axis  component  device  fluid  includes  method  portion  pressure  sensor  signal  structure  surface  system  unit 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: Untitled

Untitled





 



Ultrasonic inspection method

Tue, 17 Nov 2015 08:00:00 EST

A method for ultrasonically inspecting components with wavy or uneven surfaces. A multi-element array ultrasonic transducer is operated with a substantial fluid layer, such as water, between the array transducer and the component surface. This fluid layer may be maintained by immersing the component in liquid or by using a captive couplant column between the probe and the component surface. The component is scanned, measuring the two dimensional surface profile using either a mechanical stylus, laser, or ultrasonic technique. Once an accurate surface profile of the component's surface has been obtained, data processing parameters are calculated for processing the ultrasonic signals reflected from the interior of the component that eliminate beam distortion effects and reflector mis-location that would otherwise occur due to the uneven surfaces.



Monitoring method and monitoring apparatus for machine tool, and machine tool

Tue, 17 Nov 2015 08:00:00 EST

The monitoring apparatus includes vibration sensors that detect vibration accompanying machining, a rotation detector and a rotation detection section that detect rotation of a main spindle, and a stability limit and vibration distribution calculation section that creates, on the basis of vibration information obtained from the vibration sensors and a rotation speed of the main spindle detected by the rotation detector and rotation detection section, both a stability limit diagram illustrating a relationship between the rotation speed and a stability limit of the machining and a vibration distribution diagram illustrating a relationship between the rotation speed and the vibration, and displays the created diagrams on a monitor in a vertical arrangement.



Ultrasonic sensor, tactile sensor, grasping apparatus, and electronic device

Tue, 08 Sep 2015 08:00:00 EDT

An ultrasonic sensor includes: a substrate; an ultrasonic transducer disposed on the substrate, and configured and arranged to transmit ultrasonic waves that propagate as plane waves in a direction orthogonal to a surface of the substrate; an acoustic refracting part contacting the ultrasonic transducer, and configured and arranged to refract the ultrasonic waves transmitted from the ultrasonic transducer; an elastically deformable elastic portion contacting the acoustic refracting part; and an ultrasonic reflecting member disposed within the elastic portion, and configured and arranged to reflect the ultrasonic waves. The acoustic refracting part is configured and arranged to refract, toward the ultrasonic reflecting member, the ultrasonic waves transmitted from the ultrasonic transducer.



Digital flowmeter

Tue, 02 Jun 2015 08:00:00 EDT

A control and measurement system for a coriolis flowmeter having a flowtube, a driver adapted to vibrate the flowtube, and a pair of sensors adapted to generate signals indicative of movement of the flowtube when it is being vibrated by the driver, wherein the sensors are positioned relative to one another so the signals from the sensors are indicative of a mass flow rate of fluid through the flowtube. A digital drive signal generator is adapted to generate a variable digital drive signal for controlling operation of the driver. The digital drive signal generator can be adapted to cause the driver to resist motion of the flowtube during a first time period and amplify motion of the flowtube during a second time period. The digital drive signal generator can also be adapted to initiate motion of the flowtube by sending one or more square wave signals to the driver.



Modular system and methodology for testing and measurement

Tue, 26 May 2015 08:00:00 EDT

A modular system and method for testing and measuring various physical and chemical properties of substances includes a user interface unit having a micro controller, a power source, a display, and an input device; and a sensing module having a sensor probe, a signal conditioner, and a sensor controller. The user interface unit and the sensing modules are in electrical communication with one another such that sensor data generated by the one or more sensor probes, corresponding to one or more properties of the substances, is transmitted to the micro controller of the user interface unit. The user interface unit can be used to remotely view, test, record, and analyze data obtained by the sensing module, which module may be located at a remote location. The user interface unit and the sensing module may be in wired or wireless communication according to various known wired and wireless connection means.



Computer-based method for real-time three-dimensional geological model calculation and reservoir navigation

Tue, 26 May 2015 08:00:00 EDT

A method of calculating a 3-D geologic model in real time using, as input, 2-D geologic data. The 3-D is used for conducting further drilling operations. The model may be updated in real time using additional measurements obtained during drilling operations.



Range marker for a navigation system

Tue, 26 May 2015 08:00:00 EDT

Devices, methods and systems are disclosed herein to describe a range marker for a navigation system. The range marker may delineate a bounded area within a navigation map that a vehicle may travel based on the amount of fuel remaining. As the fuel continues to decrease during operation of the vehicle, the range marker may become smaller and smaller indicating a shrinking range since the fuel remaining decreases, thereby allowing the driver to easily identify which gas stations may be within a range of the vehicle (based on a current vehicle fuel level) and which gas stations might not be within the range of the vehicle.



Device and process for vehicle driving evaluation

Tue, 26 May 2015 08:00:00 EDT

Device (10) for vehicle driving evaluation comprising: A means (11) to obtain at least one physical parameter whereby it possible at any time to determine the value of the speed and instantaneous acceleration of a traveling vehicle;A calculation and comparison unit (12) whereby it is possible, from said physical parameter, to calculate an effective parameter that depends on said instantaneous acceleration and to compare said effective parameter with a reference parameter;A driving evaluation unit (13), whereby it is possible to generate a vehicle driving energy score by measuring the variance between said effective parameter and said reference parameter. Corresponding vehicle driving evaluation process.



Parking sensor device

Tue, 26 May 2015 08:00:00 EDT

A parking sensor device has a casing, a front cover, a sensor module and an assembling clamp. The casing has two first hooking elements. The front cover is mounted on the casing. The sensor module is mounted in the casing and the front cover. The assembling clamp detachably engages the casing and has two second hooking elements. The second hooking elements selectively hook the first hooking elements of the casing respectively. The casing and the assembling clamp are engaged quickly with each other, thereby facilitating the easy fabrication of the parking sensor device and improving the convenience of maintenance of the parking sensor device.



Remotely readable valve position indicators

Tue, 26 May 2015 08:00:00 EDT

Remotely readable valve position indicators and related methods are described. An example apparatus in accordance with the teachings of this disclosure includes a valve body, a valve stem and a fluid flow control apparatus coupled to the valve stem. The fluid flow control apparatus is longitudinally displaceable between a first position and a second position to control fluid flow through a flow aperture of the valve body. The apparatus also includes a valve position indicator including an identifier device coupled to the valve stem. In the first position, the wireless identifier device associated with a first value indicative of the first position of the fluid flow control apparatus. In the second position, the wireless identifier device associated with a second value indicative of the second position of the fluid flow control apparatus.



System and method for stick-slip correction

Tue, 26 May 2015 08:00:00 EDT

A method of processing downhole measurement data includes: receiving formation measurement data generated by a downhole tool during a logging-while drilling operation over a selected time period; receiving a measured depth corresponding to the selected time period based on data taken at a surface location; receiving tool rotation data generated by measurements of a rotational rate of the downhole tool taken by a downhole sensor during the selected time period; calculating a new depth of the tool as a function of time over the selected time period based on a relationship between the tool rotation data and the measured depth; and correcting an original depth of the measurement data with the new depth.



Low noise amplifier for multiple channels

Tue, 26 May 2015 08:00:00 EDT

An amplifier system has an amplifier for amplifying a plurality of input signals from a plurality of different channels, and a plurality of demodulators each operatively coupled with the amplifier for receiving amplified input signals from the amplifier. Each demodulator is configured to demodulate a single amplified input channel signal from a single channel of the plurality of different channels. The system thus also has a plurality of filters, coupled with each of the demodulators, for mitigating the noise.



Vertically integrated systems

Tue, 26 May 2015 08:00:00 EDT

Embodiments of the present invention provide an integrated circuit system including a first active layer fabricated on a front side of a semiconductor die and a second pre-fabricated layer on a back side of the semiconductor die and having electrical components embodied therein, wherein the electrical components include at least one discrete passive component. The integrated circuit system also includes at least one electrical path coupling the first active layer and the second pre-fabricated layer.



Method for manufacturing a cap for a MEMS component, and hybrid integrated component having such a cap

Tue, 26 May 2015 08:00:00 EDT

A manufacturing method for a cap, for a hybrid vertically integrated component having a MEMS component a relatively large cavern volume having a low cavern internal pressure, and a reliable overload protection for the micromechanical structure of the MEMS component. A cap structure is produced in a flat cap substrate in a multistep anisotropic etching, and includes at least one mounting frame having at least one mounting surface and a stop structure, on the cap inner side, having at least one stop surface, the surface of the cap substrate being masked for the multistep anisotropic etching with at least two masking layers made of different materials, and the layouts of the masking layers and the number and duration of the etching steps being selected so that the mounting surface, the stop surface, and the cap inner side are situated at different surface levels of the cap structure.



Ratio meter of a thermal sensor

Tue, 26 May 2015 08:00:00 EDT

A ratio meter includes a converter circuit, a first counter, a delay circuit, and a second counter. The converter circuit is configured to receive a temperature-independent signal, to convert the received temperature-independent signal into a first frequency signal during a first phase, to receive a temperature-dependent signal, and to convert the temperature-dependent signal into a second frequency signal during a second phase. The first counter is configured to receive the first frequency signal and to generate a control signal by counting a predetermined number of pulses of the first frequency signal count. The delay circuit is configured to delay the control signal for a predetermined time delay. The second counter is configured to receive the second frequency signal and to generate a count value by counting the second frequency signal.



Temperature sensor, manufacturing process and corresponding method of assembly

Tue, 26 May 2015 08:00:00 EDT

The invention relates to a temperature sensor comprising: a temperature-sensitive element (3); and a peripheral casing (7) accommodating the temperature-sensitive element (3) and having a closed end (9), the peripheral casing (7) being able to be inserted into a corresponding cavity (11), characterized in that the closed end (9) of the peripheral casing (7) has a peripheral portion (21) revealing, butted against the closed end, a flexible assembly stop (23) after said peripheral portion (21), said stop (23) being able to deform towards the peripheral portion (21) by shape cooperation with the bottom (15) of the corresponding cavity (11). The subject of the invention is also a process for manufacturing a temperature sensor as described above and a method of assembling said sensor.



Shaft connection structure and shaft connection method

Tue, 26 May 2015 08:00:00 EDT

A shaft connection structure connects a pair of rotating shafts by a fit between a pair of spline shafts, wherein the pair of rotating shafts are provided with corresponding ones of the pair of spline shafts. The shaft connection structure includes a shaft connection assist device. The shaft connection assist device includes a centering ring and centering pins. The centering ring is arranged outside of a first one of the spline shafts and coaxially with the first spline shaft. The centering pins are provided outside of a second one of the spline shafts. The centering pins engage with an outer peripheral surface of the centering ring and bring a shaft axis of the first spline shaft and a shaft axis of the second spline shaft into a range enabling the fit therebetween.



Fluid control modules for use with downhole tools

Tue, 26 May 2015 08:00:00 EDT

Downhole tool fluid flow control apparatus including a first fluid valve between a first portion of a first flowline and a second portion of a second flowline. The first and second flowlines are adjacent each other. A second fluid valve is between a second portion of the first flowline and a first portion of the second flowline. The first and second fluid valves are controllable to cause fluid flow between the first portion of the first flowline and the second portion of the second flowline or between the first portion of the second flowline and the second portion of the first flowline.



Systems and methods for managing pressure and flow rate

Tue, 26 May 2015 08:00:00 EDT

A device for controlling fluid flow pressure and flow rate is disclosed. The device includes a first orifice plate, a second orifice plate housed in a tubular structure. The first orifice plate includes a first orifice of a first diameter (d1) and the first orifice is positioned near an edge of the first orifice plate. The second orifice plate includes a second orifice of a second diameter (d2) and the second orifice is positioned near an edge of the second orifice plate. The tubular structure has an effective diameter (D) comprising the first orifice plate and the second orifice plate placed at perpendicular direction to the fluid flow within the tubular structure, separated by an optimum distance (X).



Unit for simulating the pressure and temperature conditions of the air drawn in by a reciprocating internal combustion engine

Tue, 26 May 2015 08:00:00 EDT

The invention relates to a unit for simulating the pressure and temperature conditions of an air flow drawn in by a reciprocating internal combustion engine (1) at a height above sea level, corresponding to the operating height of said reciprocating internal combustion engine (1). According to the invention, the unit comprises at least: (a) a radial inward-flow turbine (2) for expanding an air flow towards the pressure and temperature of the air drawn in by the reciprocating internal combustion engine; (b) a first container (4) and (c) a second container (5) connected to the first container (4) by means of at least a connection pipe (7) in order to balance the pressure between the two containers; (d) a centrifugal compressor (3); and (e) a vacuum pump (6) for maintaining a pressure equal to the pressure of the air flow drawn in by the reciprocating internal combustion engine (1). The invention also relates to the use of said unit for simulating the pressure and temperature conditions of the air drawn in by a reciprocating internal combustion engine.



System and method for controlling a vacuum pump that is used to check for leaks in an evaporative emissions system

Tue, 26 May 2015 08:00:00 EDT

A control system according to the principles of the present disclosure includes a fuel system diagnostic module and a pump control module. The fuel system diagnostic module performs a diagnostic test on a fuel system when a vacuum pump is switched off to prevent flow through the vacuum pump and thereby seal a portion of the fuel system from an atmosphere. The vacuum pump includes a cam ring, a rotor that rotates within the cam ring, and vanes that slide into and out of slots in the rotor as the rotor rotates. The pump control module switches on the vacuum pump for a predetermined period to force the vanes out of the slots and into contact with the cam ring to seal the vacuum pump before switching off the vacuum pump for the fuel system diagnostic test.



Systems and methods for inline sampling

Tue, 26 May 2015 08:00:00 EDT

Methods and devices for inline sampling of a bulk material, such as a powder, are provided. The material's bulk density can be determined from samples drawn using methods and devices described herein. One embodiment of a method of sampling a material allows the material to flow through a sampling compartment, closes off the flow of material below the sampling compartment, builds up a column of material through the sampling compartment, shifts the sampling compartment to remove a slice of material in the column, and places the slice of material into a sample container. A device for sampling a material is provided in another embodiment. The device includes an inlet, an outlet aligned with the inlet, and a sample collector. The sample collector can include at least one through hole and be configured to move such that the at least one through hole can be moved into and out of alignment with the inlet and the outlet.



Support structure for load measurement sensor

Tue, 26 May 2015 08:00:00 EDT

A support structure for a load measurement sensor has sufficient durability without adding a large load to a portion transmitting a load to the load measurement sensor. In a support structure for a load measurement sensor, including a sensor body detecting a load generated from a seat having a seat frame and an extension shaft portion extending from the sensor body, by way of attachment brackets in the state where the extension shaft portion follows the horizontal direction, the support structure includes a load input portion which comes into contact with the sensor body and inputs a load to the sensor body, the sensor body includes a load receiving surface which contacts the load input portion and receives the load, and the load input portion is formed to be movable in the axial direction of the extension shaft portion with respect to the load receiving surface.



Device for measuring a machine tool pull-in or clamping force

Tue, 26 May 2015 08:00:00 EDT

A device and method for measuring the clamping force a machine tool exerts on a tool holder that includes a piston or cylinder body defining a bore that slidably receives a piston. A fluid filled pressure chamber is defined between the piston and the body and a pressure gauge carried by the piston communicates with the pressure chamber such that movement in the piston in at least one direction exerts compressive forces on the fluid in the pressure chamber which is communicated to the pressure gauge. A retention knob is coupled to the piston and is engageable by the machine tool such that the clamping force exerted by the machine tool is transmitted to the piston. Hex-shaped structure on the piston that is received by a complementally formed recess in the cylinder body inhibits relative rotation between the piston and the body and facilitates installation and removal of the retention knob. A pin forming part of the piston is engageable by a pin receiving recess in the piston body and ensures a predetermined orientation between a shank portion and the piston body, during assembly.



Torque sensor bearing arrangement and method

Tue, 26 May 2015 08:00:00 EDT

A torque sensor bearing arrangement for a shaft having first and second bearings, each with respective inner ring and outer rings with rolling elements therebetween. The bearings are located at first and second ends of the shaft. First and second sensing rings are connected to the outer rings of the bearings. First and second marking rings are connected to the inner rings, spaced apart from and aligned with the respective first and second sensing rings. The marking rings each have a wavy surface facing the respective sensing ring to form respective first and second sensors from the respective sensing ring—marking ring pairs. The sensors detect a rotational angle position of the shaft and provide a signal. A controller receives signals from the first and second sensors and calculates at least one of torque or an angular speed of the shaft based on signals from the first and second sensors.



Force/moment sensor for measurement of forces and moments

Tue, 26 May 2015 08:00:00 EDT

A force/moment sensor for measurement of three orthogonal forces and three orthogonal moments, comprises an inner holding element which is surrounded by an outer holding element. The two holding elements are connected to each other by deformation elements. For each deformation element, at least one deformation transducer is provided. The force/moment sensor is preferably monolithic, and the deformation transducers, formed as strain gauges, are preferably arranged in one plane or in two preferably parallel planes.



Wireless passive radio-frequency strain and displacement sensors

Tue, 26 May 2015 08:00:00 EDT

Wireless strain and displacement sensors wirelessly monitor structural health and integrity, and are made by printing inductor-interdigital capacitor sensing circuits on a variety of substrates, including ceramic substrates, with thermally processable conductive inks. Sensors of the invention can be employed to detect strain and displacement of civil structures, such as bridges and buildings. The sensors include sensing elements that are mounted or printed on stiff, inflexible substrates, which prevent the sensing elements from bending, stretching, or otherwise warping when the sensor is strained. An interlayer between the sensing elements allows the sensing elements to move with respect to each other during application of strain. Thus, strain causes the sensing elements to move but not to deform, causing changes in sensor resonance that can be detected through wireless radio-frequency interrogation. Because the sensing elements do not change shape when under strain, the sensor can undergo millions of measurement cycles before breaking.



Footcare product dispensing kiosk

Tue, 26 May 2015 08:00:00 EDT

A kiosk apparatus that may select for a person a recommended footcare product based on pressure measurements collected from pressures sensors or calculated biomechanical data estimates. Pressure measurements and calculated biomechanical data estimates may be used to determine if a foot is unshod on the pressure sensor and also group a person into a classified subgroup. The pressure measurement and calculated biomechanical data estimates may also be used to select a recommended footcare product.



Apparatus configured to detect a physical quantity of a flowing fluid, and a respective method

Tue, 26 May 2015 08:00:00 EDT

Apparatus configured detect a physical quantity, for example a density, of a flowing fluid, the apparatus including: a sensor body (2) configured to extend into the flowing fluid, the sensor body comprising a fiber Bragg grating (FBG) of a fiber Bragg grating sensor (3, 7, FBG), for generating a detector signal relating to vibration of at least part (2B) of the sensor body (2); anda processing unit, configured to process the detector signal, and to determine the physical quantity based on detected vibration at a mechanical eigenfrequency of the flexible part (2B) of the sensor body (2).



Integrated circuit and apparatus for detecting oscillations

Tue, 26 May 2015 08:00:00 EDT

An integrated circuit includes a pulse generator to provide an excitation pulse to an output terminal and a comparator to receive a signal in response to the excitation pulse and for comparing the signal to a threshold to produce a comparator output signal corresponding to oscillations in the signal. The integrated circuit further includes a counter to count pulses in the comparator output signal and a discriminator circuit to compare a count value of the counter to a damping threshold and for providing an output signal having a first value when the count value is equal to or exceeds the damping threshold and otherwise having a second value.



Compression fitting

Tue, 26 May 2015 08:00:00 EDT

A compression fitting includes a housing, a compressible seal, a follower and a driving member. The housing includes an axial cavity having a lateral sidewall that includes an axial keyway therein. The cavity terminates at a first end portion thereof at a seat. The compressible seal may receive a signal transmitting lead therethrough, and is disposed within the cavity and seated on the seat. The follower is axially movable within the cavity for selective engagement with the seal for axially compressing the seal against the seat, the sidewall of the cavity and the signal transmitting lead. The follower includes an integral key that extends laterally outward therefrom and is received within the keyway, and an axial bore for accommodation therewithin of the lead. The driving member is rotatably mounted on the housing and engageable with the follower such that rotation of the driving member causes an axial translation thereof.



Method for determining the fatigue capital of a cable

Tue, 26 May 2015 08:00:00 EDT

The invention relates to a method for determining the fatigue capital of a cable supporting a civil engineering structure, the method including: a measuring step (S1, S2) during which the normal tensile stress in the cable and the bending stress in the cable are measured in a synchronized manner so as to obtain the compound stress in the cable; a counting step (S3) during which a count of the number of stress cycles, depending on the amplitude of the stress, is carried out from the measured compound stresses; and a step (S4) of assessing the fatigue capital of the cable during which the fatigue capital of the cable is determined by comparing the count, carried out in the counting step, with a pre-set Wohler curve for the cable.



Method, apparatus and system for testing the self-sealing capabilities of a concrete sample

Tue, 26 May 2015 08:00:00 EDT

A method, apparatus and system for testing the self-sealing properties of a concrete sample. The method may include providing an apparatus for creating a consistent and reproducible crack in a concrete sample and creating a consistent and reproducible crack in the concrete sample with the apparatus. The method may further include providing a fluidic delivery system that provides a consistent flow of fluid for testing the self-sealing properties of the concrete sample and testing the self-sealing properties of the concrete sample with the system.



Pressure transmitter with fill tube

Tue, 26 May 2015 08:00:00 EDT

A pressure transmitter has a pressure sensor, an isolator diaphragm, and a fill tube. Interior passages in the pressure sensor module body are filled with isolator fluid and provide fluid connections. The isolator fluid couples pressure from the first isolator diaphragm assembly to the pressure sensor. A first crimp portion of the fill tube radially narrows into a substantially solid circular cylindrical cross section to form a first primary seal that is resistant to high pressure cycling.



Detection of anomalous movement in a reciprocating device

Tue, 26 May 2015 08:00:00 EDT

One embodiment of the invention provides a system for identifying an anomalous movement of a reciprocating element in a reciprocating device, the system comprising: at least one sensing device for sensing a vibration signal of the reciprocating element; a processing apparatus for separating the vibration signal into a first component having a first frequency range and a second component having a second frequency range different than the first frequency range; and a device for at least one of analyzing or displaying at least one of the first or the second components of the vibration signal, wherein the vibration signal includes positional data of the reciprocating element along at least one axis of the reciprocating element.



Photoacoustic measuring apparatus

Tue, 26 May 2015 08:00:00 EDT

The present invention employs a photoacoustic measuring apparatus including: a laser light source; a forming unit for forming a second light beam by dividing or deforming a laser light beam; an optical member for guiding the second light beam to the surface of a subject; a probe for obtaining a photoacoustic wave generated when the subject is irradiated with the second light beam; and a buffering member that contacts the surface of the subject and transmits light, wherein the optical member overlaps areas of the second light beam having a small light intensity on the surface of the subject, the probe and the optical member are positioned on an identical side of the buffering member relative to the subject, and the optical member refracts the second light beam such that the second light beam enters the subject through the buffering member while avoiding the probe.



Energy absorbent ultrasonic inspection system with laser pointer

Tue, 26 May 2015 08:00:00 EDT

A system is provided for inspecting a workpiece that includes a workpiece defect and a workpiece surface. The system includes a laser pointer connected to an ultrasonic inspection system. The ultrasonic inspection system includes an ultrasonic transducer that directs sound waves to the workpiece defect, where the sound waves contact the workpiece surface at a workpiece surface location. The laser pointer directs a laser beam against the workpiece surface to visually annunciate the workpiece surface location.



Testing method using guided wave

Tue, 26 May 2015 08:00:00 EDT

A testing method using a guided wave generates a guided wave to propagate through a subject as a testing target in a longitudinal direction of the subject, detects a reflected wave of the guided wave and examines the subject on the basis of the reflected wave. The testing method includes the steps of (A) obtaining data for defect amount estimation beforehand indicating a relationship between a defect amount of the subject and a magnitude of a reflected wave, (B) generating a guided wave so as to propagate through the subject, and detecting a reflected wave of the guided wave, and (C) estimating a defect amount of the subject on the basis of the data for defect amount estimation obtained at (A) and the magnitude of the guided wave detected at (B).



***WITHDRAWN PATENT AS PER THE LATEST USPTO WITHDRAWN LIST***Ultrasonic inspection method

Tue, 26 May 2015 08:00:00 EDT

A method for ultrasonically inspecting components with wavy or uneven surfaces. A multi-element array ultrasonic transducer is operated with a substantial fluid layer, such as water, between the array transducer and the component surface. This fluid layer may be maintained by immersing the component in liquid or by using a captive couplant column between the probe and the component surface. The component is scanned, measuring the two dimensional surface profile using either a mechanical stylus, laser, or ultrasonic technique. Once an accurate surface profile of the component's surface has been obtained, data processing parameters are calculated for processing the ultrasonic signals reflected from the interior of the component that eliminate beam distortion effects and reflector mis-location that would otherwise occur due to the uneven surfaces.



Porosity inspection system for composite structures

Tue, 26 May 2015 08:00:00 EDT

A method and apparatus for inspecting a composite structure. A response sound signal to a sound signal sent into the composite structure at a location on the composite structure is detected. An attenuation is identified in the response sound signal detected in response to the sound signal sent into the composite structure at the location on the composite structure. An indication of whether additional evaluation of the location is needed based on a comparison of the attenuation in the response sound signal to a baseline attenuation value for porosity for the location on the composite structure is generated.



Reference free inconsistency detection system

Tue, 26 May 2015 08:00:00 EDT

A method and apparatus for identifying an inconsistency. A number of waves that propagate through a structure are generated. A response signal is generated in response to detecting at least a portion of the number of waves that propagate through the structure. A determination is made as to whether the response signal includes a reflected component. A presence of the inconsistency in the structure is indicated when the response signal includes the reflected component.



Apparatus and method for determining a damage state of a wheel bearing

Tue, 26 May 2015 08:00:00 EDT

An apparatus and a method for determining a damage state of a wheel bearing (12), in which a wheel (15) with a tire (9) arranged on a rim (8) in such a manner that the wheel can be rotated on an axle, in a motor vehicle, in particular during maintenance work on the motor vehicle. In order to avoid the wheel bearing (12) being accessed unnecessarily, a sensor unit (1) which communicates with an evaluation unit and is removably fastened radially outside a screw circle (11) of the rim (8) is provided for the purpose of determining the damage state.



Particle analysis in an acoustic cytometer

Tue, 26 May 2015 08:00:00 EDT

The present invention is a method and apparatus for acoustically manipulating one or more particles.



Micromechanical component and manufacturing method for a micromechanical component

Tue, 26 May 2015 08:00:00 EDT

A micromechanical component is described having a substrate which has at least one stator electrode fixedly mounted with respect to the substrate, a movable mass having at least one actuator electrode fixedly mounted with respect to the movable mass, and at least one spring via which the movable mass is displaceable. The movable mass is structured from the substrate with the aid of at least one separating trench, at least one outer stator electrode spans at least one section of the at least one separating trench and/or of the movable mass, the at least one actuator electrode protrudes between the at least one outer stator electrode and the substrate, and at least one inner stator electrode protrudes between the at least one actuator electrode and the substrate. A related manufacturing method is also described for a micromechanical component.



Method of setting valid output sections of 2-axis acceleration sensor or 3-axis acceleration sensor

Tue, 26 May 2015 08:00:00 EDT

Disclosed herein is a method of setting valid output sections of a 3-axis acceleration sensor mounted within a tire of a vehicle, including setting an output signal of the 3-axis acceleration sensor in the z-axis direction as a reference signal, setting a specific section of the output signal in the z-axis direction as a valid section where a part of the tire where the 3-axis acceleration sensor is mounted contacts a road surface, and setting sections of output signals of the 3-axis acceleration sensor in the x-axis and y-axis directions corresponding to the valid section in the z-axis direction as valid sections in the x-axis and y-axis directions. The method sets precise valid sections applied to detect information between the tire and a ground surface so as to minimize a component of a noise section by connecting output signals in the x-axis, y-axis and z-axis directions.



Angular velocity sensor

Tue, 26 May 2015 08:00:00 EDT

Disclosed herein is an angular velocity sensor including: first and second mass bodies; a first frame provided at an outer side of the first and second mass bodies; a first flexible part connecting the first and second mass bodies to the first frame in a Y axis direction, respectively; a second flexible part connecting the first and second mass bodies to the first frame in an X axis direction, respectively; a second frame provided at an outer side of the first frame; a third flexible part connecting the first and second frames to each other in the X axis direction; and a fourth flexible part connecting the first and second frames to each other in the Y axis direction, wherein the first frame has a thickness in a Z axis direction thinner than that of the second frame.



Electronic device, manufacturing method thereof, and electronic apparatus

Tue, 26 May 2015 08:00:00 EDT

An electronic device includes a base body, a functional element that is placed on the base body, and a lid body, formed from silicon, that is placed over the base body so as to cover the functional element. A hole portion and a sealing member that closes the hole portion are disposed in the lid body, in the hole portion, the area of a second opening disposed on a side opposite to a first opening is larger than the area of the first opening disposed on the base body side, and the ratio of the volume of the sealing member to the volume of the hole portion is equal to or higher than 35% and is equal to or lower than 87%.



Inertial sensor control module and method for controlling inertial sensor control module

Tue, 26 May 2015 08:00:00 EDT

Disclosed herein is an inertial sensor control module. The inertial sensor control module according to a preferred embodiment of the present invention includes: an inertial sensor including a driving mass, a driving unit driving the driving mass of the inertial sensor according to a control signal to the inertial sensor, a control unit connected to the driving unit and generating the control signal to transfer the generated control signal to the driving unit, and a sensing unit connected between the inertial sensor and the control unit and detecting information about whether the driving mass of the inertial sensor is in a stabilized state or information about an inertial force of the inertial sensor to transfer the detected information to the outside or the control unit.



Gyro sensor and electronic device

Tue, 26 May 2015 08:00:00 EDT

A gyro sensor according to the invention includes a first mass portion including a first detection portion, a second mass portion including a second detection portion, first drive portions vibrating the first mass portion in a direction of a first axis, and a force conversion portion fixed to an anchor portion. The first mass portion and the second mass portion are connected with the force conversion portion. The force conversion portion is displaced with the anchor portion as an axis, and vibrates the second mass portion in a direction of a second axis crossing the first axis in a plane view.



Inertial unit with several detection axes

Tue, 26 May 2015 08:00:00 EDT

Inertial unit for the measurement of accelerations and/or rotations comprising four sensors, spread out on two intersecting axes, each sensor comprising two inertial masses, each inertial mass comprising a moveable excitation part and a moveable detection part, the moveable excitation parts of a sensor being separate from those of the other sensors, said unit also comprising means for exciting the excitation parts of the sensors and means for detecting the movement of the detection parts, the two inertial masses of each sensor) being mechanically coupled, the four sensors being coupled by elastically deformable mechanical coupling means and able to transmit the excitation vibrations from one axis to the other.