Subscribe: Untitled
http://www.freepatentsonline.com/rssfeed/rsspat310.xml
Added By: Feedage Forager Feedage Grade B rated
Language: English
Tags:
core  device  direction  electric  element  includes  machine  magnetic  motor  portion  provided  rotor  section  shaft  stator 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: Untitled

Untitled





 



Stator segment unit adapted to build a ring-shaped stator when assembled

Tue, 31 May 2016 08:00:00 EDT

A stator segment unit adapted to build a ring-shaped stator when assembled is provided. The stator segment unit includes a stator yoke with at least one stator tooth protruding from the yoke, at least one stator winding having a first winding section fixed close to the tooth, and a second winding section extending freely from the stator segment unit.



Electric motor having rotor structure for avoiding defect due to strain generated by temperature change, and production method thereof

Tue, 31 May 2016 08:00:00 EDT

An electric motor having a rotor structure and a production method thereof, wherein a strain due to temperature change does not occur and a manufacturing problem does not occur. Each permanent magnet does not contact each other, and a deformable intervening member is positioned between the end surfaces of the magnets. Intervening member is an elastically or plastically deformable member, and the thickness of the intervening member in the direction of the rotation axis of the rotor is determined so that the neighboring permanent magnets, which are bonded to a rotor core within a manufacturing temperature range of the rotor, do not contact each other at a lower limit of an operating temperature of the electric motor.



Motor mounting bracket

Tue, 01 Dec 2015 08:00:00 EST

A mounting bracket for an electrical motor having two mounting interfaces at different distances from the bottom surface to be used in combination with two stator frames of different sizes. A method for obtaining equal shaft heights for electrical motors having stator frames of different sizes.



Vibration element, manufacturing method thereof, and vibration wave actuator

Tue, 14 Jul 2015 08:00:00 EDT

A vibration element includes a substrate, a piezoelectric element including a piezoelectric layer and an electrode layer, and a bonding layer provided between the piezoelectric element and the substrate and comprising ceramic containing melted glass powder, wherein the vibration element causes the substrate to vibrate by vibration energy of the piezoelectric element to output the vibration energy of the substrate, and the piezoelectric element is fixed to the substrate via the bonding layer.



Piezoelectric vibration element, manufacturing method for piezoelectric vibration element, piezoelectric resonator, electronic device, and electronic apparatus

Tue, 02 Jun 2015 08:00:00 EDT

A piezoelectric vibration element includes a piezoelectric substrate including a thin vibration region and a thick section integrated along three sides excluding one side of the vibration region, excitation electrodes respectively arranged on the front and rear surfaces of the vibration region, and lead electrodes. The thick section includes a first thick section and a second thick section arranged to be opposed to each other across the vibration region and a third thick section connected between proximal ends of the first and second thick sections. The second thick section includes an inclined section connected to the one side of the vibration region, a second thick section main body connected to the other side of the inclined section, and at least one slit for stress relaxation.



Electronic apparatus and image forming apparatus

Tue, 26 May 2015 08:00:00 EDT

An image forming apparatus includes a driving motor, a gear mechanism including a drive gear rotated by driving force of the driving motor and a slave gear meshed with the drive gear, to transmit the driving force to an object, one of the drive gear and the slave gear including a toothless portion without the gear tooth, formed on a circumferential edge of the corresponding gear, a control unit, a detection unit that detects a driving current for the driving motor when the driving motor is working, a decision unit that decides whether the driving current detected by the detection unit is below a predetermined threshold, and a calculation unit that counts the number of times that the decision unit has decided that the driving current is below the threshold, and calculates an amount of movement of the slave gear on the basis of the number of times counted.



Parking sensor device

Tue, 26 May 2015 08:00:00 EDT

A parking sensor device has a casing, a front cover, a sensor module and an assembling clamp. The casing has two first hooking elements. The front cover is mounted on the casing. The sensor module is mounted in the casing and the front cover. The assembling clamp detachably engages the casing and has two second hooking elements. The second hooking elements selectively hook the first hooking elements of the casing respectively. The casing and the assembling clamp are engaged quickly with each other, thereby facilitating the easy fabrication of the parking sensor device and improving the convenience of maintenance of the parking sensor device.



Unreleased mems resonator and method of forming same

Tue, 26 May 2015 08:00:00 EDT

A microelectromechanical (MEM) resonator includes a resonant cavity disposed in a first layer of a first solid material disposed on a substrate and a first plurality of reflectors disposed in the first layer in a first direction with respect to the resonant cavity and to each other. Each of the first plurality of reflectors comprises an outer layer of a second solid material and an inner layer of a third solid material. The inner layer of each of the first plurality of reflectors is adjacent in the first direction to the outer layer of each reflector and to either the outer layer of an adjacent reflector or the resonant cavity.



Surface acoustic wave filter and duplexer using same

Tue, 26 May 2015 08:00:00 EDT

An SAW filter and a duplexer excellent in electrical characteristics will be provided. An SAW filter has a piezoelectric substrate 40, a surface acoustic wave element 10 having a first IDT electrode 1 on the piezoelectric substrate 40, a first signal line 31 electrically connected to the first IDT electrode 1, and a ring-shaped reference potential line 9 which has a first intersecting portion intersecting with the first signal line 31 through an insulation member 41 and surrounds the surface acoustic wave element 10.



Electronic oscillation circuit

Tue, 26 May 2015 08:00:00 EDT

An electronic oscillator circuit has a first oscillator, for supplying a first oscillation signal, a second oscillator, for supplying a second oscillation signal, a first controller for delivering the first control signal as a function of a phase difference between a first controller input and a second controller input of the first controller; a second controller for delivering the second control signal as a function of a phase difference between a first controller input of the second controller and a second controller input of the second controller; a resonator; at least a second resonance frequency, with a first phase shift dependent on the difference between the frequency of a second exciting signal and the second resonance frequency and processing means, for receiving the first oscillator signal and the second oscillator signal, determining their mutual proportion, looking up a frequency compensation factor in a prestored table and outputting a compensated oscillation signal.



Belt battery charger

Tue, 26 May 2015 08:00:00 EDT

A belt battery charger includes a belt having a first end, a second end and an elongated central portion extending between the first and second ends. A plurality of electrically connected rechargeable batteries are carried by the central portion of the belt. A belt buckle located at the first end of the belt includes a frame that is secured to the central portion of the belt. The buckle further includes a prong in the form of an electrical connector electrically connected to the batteries and pivotally secured to the frame. The second end of the belt includes a number of spaced apart eyelets passing therethrough. The prong is shaped so as to be able to enter one of the eyelets to secure the second end of the belt to the buckle in the conventional manner. A second electrical connector is located adjacent the second end of the belt and is also connected to the batteries. One of said connectors is adapted to be connected to a cell phone for charging the same.



Crystal device

Tue, 26 May 2015 08:00:00 EDT

A crystal device is provided, in which a peeling of a bonding material is prevented by using the bonding material having a thermal expansion coefficient which is between the coefficients in a first direction and a second direction of a bonding surface of a crystal element. A crystal device includes a rectangular crystal element formed with a crystal material that includes an excitation part and a frame surrounding the excitation part. The device further includes a rectangular base bonded to a principal surface of the frame, and a lid bonded to another principal surface of the frame; and the frame, the base and the lid have edges respectively along a first direction and a second direction intersecting with the first direction. The bonding material is applied having a thermal expansion coefficient that is between the coefficients in the first direction and second direction of the crystal element.



Driving apparatus

Tue, 26 May 2015 08:00:00 EDT

A driving apparatus comprises a piezoelectric element (12) expanding and contracting in accordance with a driving pulse signal (40, 42), a supporting shaft (14) connected to said piezoelectric element, a movable body (20) frictionally engaged with said supporting shaft and capable of moving along said supporting shaft, and a driving portion (30) applying said driving pulse signal having a voltage value that corresponds to a driving voltage value (VD) to said piezoelectric element in order to cause relative movement of said movable body to said supporting shaft, wherein a driving voltage waveform (50) showing a time-varying of said driving voltage value has a first dropping portion (55) where said driving voltage value sharply drops from a first value (V1) to a second value (V2), a second dropping portion (56) where said driving voltage value slowly drops from said second value (V2) to a third value (V3) compared with said first dropping portion, and a third dropping portion (57) where said driving voltage value sharply drops from said third value (V3) to a standard value (V0) compared with said second dropping portion.



Motor

Tue, 26 May 2015 08:00:00 EDT

There is provided a motor including a rotor and a stator arranged outside the rotor in the radial direction. The rotor includes a rotor core, a plurality of magnets arranged at equal intervals in the circumferential direction of the rotor core and functioning as one magnetic pole, and salient poles integrated with the rotor core, each arranged between adjacent magnets and at a distance from the magnets. The salient poles function as the other magnetic pole. A stator has a stator core having a plurality of teeth extending in the radial direction of the stator and arranged at equal intervals in the circumferential direction, and multi-phase coils attached to the teeth.



Rotary electric machine

Tue, 26 May 2015 08:00:00 EDT

A rotary electric machine includes a rotor core in which first magnetic pole portions having permanent magnets and second magnetic pole portions having no permanent magnets are alternately arranged in a circumferential direction; and a stator core which is arranged to face an outer periphery of the rotor core. The rotor core is configured such that an average gap length between the stator core and the second magnetic pole portions is larger than an average gap length between the stator core and the first magnetic pole portions.



Preload control device of magnetic bearing

Tue, 26 May 2015 08:00:00 EDT

The present invention provides a preload control device of a magnetic bearing, which includes a main shaft, a housing, a first magnetic bearing mechanism, a second magnetic bearing mechanism, a pressing mechanism, and a sliding member. The main shaft is rotatably formed in the shape of a rod that is longitudinally long. The housing covers and is fixed outside the main shaft. The first magnetic bearing mechanism is disposed between the housing and the main shaft. The second magnetic bearing mechanism is spaced from the first magnetic bearing mechanism in the axial direction of the main shaft, between the housing and the main shaft. The pressing mechanism is disposed between the second magnetic bearing mechanism and the frusto-conical member. The sliding member is disposed between the pressing mechanism and the second magnetic bearing mechanism.



Magnetic bearing structure and turbo machine having the same

Tue, 26 May 2015 08:00:00 EDT

Disclosed is a magnetic bearing structure including a permanent magnet, levitating a rotation body without a bias current, and easily magnetizing the permanent magnet. The magnetic bearing structure includes a ring-shaped permanent magnet provided on a side of a rotation shaft and magnetized in a direction parallel with a shaft direction of the rotation shaft, a coil installed on a side of the permanent magnet, and a conductor installed on an external side of the coil and used to form a magnetic field path. According to the configuration, when an additional bias current is not supplied to the coil installed in the magnetic bearing, a rotation body levitates according to the magnetic field caused by the permanent magnet, and a magnetized direction of the permanent magnet is in parallel with a shaft direction of the rotation shaft thereby allowing easy magnetization and increasing productivity of the magnetic bearing.



Magnetic bearing device

Tue, 26 May 2015 08:00:00 EDT

Provided is a magnetic bearing device capable of facilitating manufacture of the magnetic bearing device and improving precision in production thereof while maintaining eddy current reducing effects. The magnetic bearing device 10 supporting a rotating shaft 3 with a magnetic force includes a plurality of magnetic poles 5 arranged in the circumferential direction of the rotating shaft 3. Each magnetic pole 5 includes an inner end surface 5b facing the outer surface of the rotating shaft in proximity thereto. The magnetic poles which are adjacent to each other in the circumferential direction respectively extend in the axial directions of the magnetic poles 5 to the inner end surfaces 5b of the magnetic poles so as to virtually interfere with each other in the vicinity of the outer surface of the rotating shaft. The virtual interfering portions 5a of both the magnetic poles 5 capable of interfering with each other are removed by cutting.



Axial flux electrical machine

Tue, 26 May 2015 08:00:00 EDT

An axial flux electrical machine including a housing, a stator located within the housing, a rotatable shaft carried by the housing by means of at least a main bearing, and a rotor fixed to the shaft within the housing. Magnetic attractive forces between the rotor and the stator produce an axial thrust on the main bearing and a biasing means (preferably in the form of a spring) is arranged to urge the shaft in a direction opposite to the axial thrust so as to reduce the net load on the main bearing. This reduction in net load on the main bearing increases bearing life and improves motor efficiency.



AC generator

Tue, 26 May 2015 08:00:00 EDT

Provided is a vehicle AC generator which enables the common use of components and the use of the same molding die for molded bodies to enable a significant reduction in fabrication cost. The vehicle AC generator includes a molded body (45) having the same outer shape. On one surface side of the molded body, a capacitor body including a capacitor element built therein is electrically connected to an insert conductor, and a resistor (44) is electrically connected to the insert conductor only when a device main body is provided outside of the AC generator. On another surface side of the molded body, the device main body is electrically connected to the insert conductor only when the device main body is provided in the AC generator.



Stator for electric rotating machine

Tue, 26 May 2015 08:00:00 EDT

A stator coil includes first to fourth in-slot portions and first and second turn portions. Both the first and third in-slot portions are received in one slot of a stator core, while both the second and fourth in-slot portions are received in another slot. The first and second turn portions both protrude from an axial end face of the stator core and respectively connect the pair of the first and second in-slot portions and the pair of the third and fourth in-slot portions. The second turn portion is located inside the first turn portion. When viewed along an axial direction of the stator core, the first and second turn portions extend so as to cross each other with a reference line C interposed therebetween; the reference line C is defined to extend along a circumferential direction of the stator core through an intersection between the first and second turn portions.



Rotating electrical machine having radial communication passages in permanent magnet rotor

Tue, 26 May 2015 08:00:00 EDT

A rotating electrical machine includes a rotor which has a rotor core formed by stacking magnetic plates having an annular plate shape in an axial direction, a permanent magnet is inserted into a magnet insertion hole formed in the rotor core, and a rotor shaft is inserted into a shaft insertion hole surrounded by an inner peripheral surface of the rotor core; and a stator. A radial communication passage is formed by a communication penetration hole group that is formed by sequentially communicating a plurality of the penetration holes from a shaft insertion hole to a magnetic resistance hole in the radial direction. The plurality of the penetration holes are divided into at least two specific magnetic plates and formed such that the radial positions of the penetration holes are different from each other and the penetration holes partially overlap each other when viewed in the axial direction.



Cooling system and method for an electronic machine

Tue, 26 May 2015 08:00:00 EDT

Embodiments of the invention provide an electric machine module including an electric machine which can include a stator assembly. The stator assembly can include stator end turns. Some embodiments can provide a housing at least partially enclosing the electric machine and the housing can at least partially define a machine cavity. Further, at least one baffle can be coupled to the housing at a region near the stator end turns, so that the at least one baffle surrounds a portion of a perimeter of the stator end turns.



Actuator assembly having a motor with heat dissipation

Tue, 26 May 2015 08:00:00 EDT

An actuator assembly includes a housing with a motor compartment, a gear compartment, a bulkhead separating the motor compartment from the gear compartment, and an aperture through the bulkhead. The actuator assembly also includes a motor assembly in the motor compartment defining a space radially between the motor assembly and the gear motor compartment. A high thermal conductivity material is disposed within the space to transfer heat from the motor assembly to the housing. The bulkhead includes one of a groove and a rib surrounding the aperture on the side of the bulkhead facing the motor compartment and the motor assembly includes the other of the groove and the rib such that the rib fits within the groove to prevent the high thermal conductivity material from migrating radially inward of the groove and the rib when the high thermal conductivity material is injected into the space.



Method and apparatus for motional/vibrational energy harvesting via electromagnetic induction using a magnet array

Tue, 26 May 2015 08:00:00 EDT

Embodiments of the subject invention pertain to a method and apparatus for vibrational energy harvesting via electromagnetic induction using a magnet array. Specific embodiments of the subject invention incorporate at least one conductive coil and at least one magnet array. Magnets used in such magnet arrays can be permanent magnets of various shapes, such as arc-shaped, square, rectangular, wedge, or trapezoidal. These magnet arrays can then be, for example, circular, hexagonal, rectangular, or square in external shape and create various types of internal magnetic fields, such as dipole, quadrupole, hexapole, or octapole magnetic fields. Through use of a magnet array, embodiments of the invention can increase the strength of magnetic fields by approximately 10 times compared to typical vibrational energy harvesters. The 10 time increase in the strength of the magnetic fields can result in up to a 100-fold increase in power. Preferably, the magnetic fields created by the subject device are substantially, if not completely, enclosed within the device.



Rotary electrical interconnect device

Tue, 26 May 2015 08:00:00 EDT

A rotary device for providing continuous electrical connections between dynamic, rotationally engaged connector components. The rotary device includes a rotor assembly comprising a plurality of slip ring elements electrically connected to a connector or cable at the rotor end of the device. The rotary device also includes a stator assembly configured to receive the rotor assembly, with slide contacts electrically connected to a connector or cable at the stator end of the device. The rotor assembly is rotationally coupled to the stator assembly, and the slip rings and slide contacts maintain electrical contact during rotation of the rotor assembly relative to the stator assembly. A first electronic device and a second electronic device connected using the rotary device can be freely rotated without twisting of the cable between the two devices. A method for assembling a rotary device configured based on the devices to be connected.



Thermal-acoustic sections for an aircraft

Tue, 26 May 2015 08:00:00 EDT

Embodiments of thermal-acoustic sections for an aircraft for reducing noise along an acoustic path produced from an acoustic source are provided herein. The thermal-acoustic section comprises a first porous layer having a first characteristic acoustic impedance. A second porous layer is disposed adjacent to the first porous layer and has a second characteristic acoustic impedance that is greater than the first characteristic acoustic impedance. The thermal-acoustic section is configured to be positioned along the acoustic path such that at least a portion of the noise from the acoustic source is directed through the first porous layer to the second porous layer to promote absorption of the noise.



Thickness shear mode resonator sensors and methods of forming a plurality of resonator sensors

Tue, 26 May 2015 08:00:00 EDT

Arrays of resonator sensors include an active wafer array comprising a plurality of active wafers, a first end cap array coupled to a first side of the active wafer array, and a second end cap array coupled to a second side of the active wafer array. Thickness shear mode resonator sensors may include an active wafer coupled to a first end cap and a second end cap. Methods of forming a plurality of resonator sensors include forming a plurality of active wafer locations and separating the active wafer locations to form a plurality of discrete resonator sensors. Thickness shear mode resonator sensors may be produced by such methods.



MEMS device with independent rotation in two axes of rotation

Tue, 19 May 2015 08:00:00 EDT

A MEMS arrangement is provided that has a top plane containing a rotatable element such as a mirror. There is a middle support frame plane, and a lower electrical substrate plane. The rotatable element is supported by a support frame formed in the middle support frame plane so as to be rotatable with respect to the frame in a first axis of rotation. The frame is mounted so as to be rotatable with respect to a second axis of rotation. Rotation in the first axis of rotation is substantially independent of rotation in the second axis of rotation.



Vibration element, vibrator, oscillator, electronic apparatus, and moving object

Tue, 19 May 2015 08:00:00 EDT

A vibration element includes a piezoelectric substrate including a vibrating section and a thick section having a thickness larger than that of the vibrating section. The thick section includes a first thick section provided along a first outer edge of the vibrating section, a second thick section provided along a second outer edge, and a third thick section provided along another first outer edge. An inclined outer edge section that intersects with each of an X axis and a Z′ axis is provided in a tip section of the piezoelectric substrate.



Piezoelectric vibrating piece, piezoelectric vibrator, oscillator, electronic apparatus and radio controlled timepiece

Tue, 19 May 2015 08:00:00 EDT

A piezoelectric vibrating piece is provided including: a pair of vibrating arm sections; a base section which is provided between the pair of vibrating arm sections; and connecting sections which connect base end sections of the pair of vibrating arm sections and a base end section of the base section, in which the vibrating arm sections have bending points and the vibrating arm sections extend in a direction away from the base section from the base end sections of the vibrating arm sections to the bending points, and the vibrating arm sections extend along the base section from the bending points to leading end sections of the vibrating arm sections.



Piezoelectric vibrating piece and piezoelectric device

Tue, 19 May 2015 08:00:00 EDT

A piezoelectric vibrating piece includes an excitation unit in a rectangular shape, a framing portion, a connecting portion, and a protrusion. The excitation unit includes a pair of excitation electrodes on the pair of principal surfaces, a first side that extends in a first direction, and a second side that extends in a second direction. The second side is longer than the first side. The second direction is perpendicular to the first direction. The connecting portion connects the first side of the excitation unit to the framing portion. The connecting portion is thinner than the framing portion. The protrusion protrudes in the thickness direction in at least one of the connecting portion and a region between the connecting portion and the excitation electrode. The length of the protrusion in the first direction is equal to or longer than a length of the connecting portion in the first direction.



Cost effective broadband transducer assembly and method of use

Tue, 19 May 2015 08:00:00 EDT

A transducer assembly for transmitting broadband sonar beams and receiving broadband sonar returned echoes with a low-cost transducer element mounted into a low-cost acoustic structure. By using a transducer element which is sufficiently thin, broadband can be achieved at a significant cost savings over existing methods and devices. Since the transducer element is sufficiently thin, a large portion of the signal energy is coupled transversely into the acoustic structure, resulting in a heavy acoustic load on the transducer element which in turn results in broadband operation. Broadband operation may be enhanced by at least partially enclosing the sufficiently thin transducer element within an aperture and/or a cap.



Piezoelectric thin-film resonator and method for manufacturing the same

Tue, 19 May 2015 08:00:00 EDT

A piezoelectric thin-film resonator includes: a lower electrode provided on a substrate; a piezoelectric film that is provided on the lower electrode and includes at least two layers; an upper electrode that is provided on the piezoelectric film and has a region sandwiching the piezoelectric film with the lower electrode and facing the lower electrode; and an insulating film that is provided in a region in which the lower electrode and the upper electrode face each other and between each of the at least two layers, wherein an upper face of the insulating film is flatter than a lower face of the insulating film.



Acoustic wave device and multilayered substrate

Tue, 19 May 2015 08:00:00 EDT

An acoustic wave device includes: a substrate; a functional element that is located on the substrate and excites acoustic waves; a side wall portion that is made of a metal and is located on the substrate so as to surround the functional element; a metal plate that is located above the functional element and the side wall portion, and seals the functional element so that a space is formed above the functional element; and a terminal that is located on the substrate and further out than the side wall portion, and is electrically connected to the functional element.



Vortex alignment Buckypaper generating electricity

Tue, 19 May 2015 08:00:00 EDT

The electrical energy generating system of the present invention comprises a piece of alignment Buckypaper, an energy generator, a thin deposition and two contacts. The alignment Buckypaper is a thin sheet made from an aggregate of carbon nanotubes. The thin deposition is formed on at least one surface of the alignment Buckypaper by electrolysis to form a semimetal material. A contact is connected with the upper surface of the alignment Buckypaper and the other contact is connected with the lower surface of the alignment Buckypaper. In use, the energy generated by the generator is inputted to the alignment Buckypaper. The energy then ionizes the molecules contained in the alignment Buckypaper. The positive charges move to the upper contact and the negative charges move to the lower contact. Such electrical energy may then be fed to a load connected with the two contacts to do work on the load.



Paste and polymer transducer including coating film formed from same as electrolyte film or electrode films

Tue, 19 May 2015 08:00:00 EDT

Paste which is prepared by any solid concentration and is excellent in terms of handleability, applicability, and storage stability; an electrolyte film or electrode film which is an even and highly flexible coating film formed in a desired thickness from the paste through a few repetitions of an application/drying step; and a polymer transducer which can be industrially and economically produced and shows excellent performance. The paste comprises: a solid polyelectrolyte (A) consisting of a block copolymer containing; a polymer block (a-1) which is represented by chemical formula (1) and a polymer block (a-2) which has substantially no ionic group and is rubbery at room temperature; an organic solvent (B) having a boiling point at 150° C. or higher; and non-dissociable particles (C) which are insoluble in the organic solvent (B) and have a major-axis length of 1-100 μm and an aspect ratio of 5 or less. The polymer transducer comprises an electrolyte film and a pair of electrode films between which the electrolyte film is sandwiched, wherein the electrolyte film or the pair of electrode films has been formed by drying and solidifying the paste into a film shape.



Ultrasonic sensor microarray and method of manufacturing same

Tue, 19 May 2015 08:00:00 EDT

A sensor assembly including one or more capacitive micromachined ultrasonic transducer (CMUT) microarray modules which are provided with a number of individual transducers. The microarray modules are arranged to simulate or orient individual transducers in a hyperbolic paraboloid geometry. The transducers/sensor are arranged in a rectangular or square matrix and are activatable individually, selectively or collectively to emit and received reflected beam signals at a frequency of between about 100 to 170 Hz.



Rotating electrical machine

Tue, 19 May 2015 08:00:00 EDT

A rotating electric machine, e.g. hydrogenerator, includes a rotor, including a rotor laminate stack extending in a machine axis direction and having a rotor winding which forms a winding head at each of the ends of the rotor laminate stack. The winding head is fastened to a winding head rim, which is arranged concentrically within the winding head and adjoins the rotor laminate stack in the axial direction, to intercept centrifugal forces by bolts passing radially through the winding head, and a fastening designed to safely absorb axial expansions of the winding head. Simple and secure fastening is achieved by the bolts being fastened to the winding head rim in each case on a T-shaped hammer profile, which extends axially and is mounted, axially movable, in a T-shaped groove in the winding head rim, additional couplers are provided that transmit axial expansions of the winding head onto the hammer profile.



Energy converting device having an eccentric rotor

Tue, 19 May 2015 08:00:00 EDT

An energy converting device having an eccentric rotor includes a fixed portion and an eccentric rotor. This fixed portion has a central axis, an outer frame, and several fixed coil portions. The eccentric rotor has a bearing, a rotatory shaft, an eccentric arm, an eccentric shaft portion, a supporting plate, an inner annular magnetic portion, and an outer annular magnetic portion. The inner magnetic portion and the outer magnetic portion are concentric and aligned with the eccentric shaft portion. The eccentric shaft portion is offset from the rotary shaft. When the rotary shaft of the eccentric rotor rotates, these fixed coil portions cut through the inner magnetic portion and the outer magnetic portion repeatedly, so magnetic flux passing through the coils alternates accordingly to generate electromotive force. Conversely, it can be used as an electric motor. In addition, it can be integrated with a cycloidal speed reducer to form a motor with speed reduction and torque augmentation capability. The integrated cycloidal motor is compact, does not need a shaft coupler to transmit power from a motor to the reducer, and therefore may operate more smoothly.



Commutator having a plurality of commutator segments and method for making the same

Tue, 19 May 2015 08:00:00 EDT

A commutator has a plurality of commutator segments fixed to an insulating support member. The commutator segments are formed by cold or hot forming a copper billet cut from a length of copper wire. Each billet has a volume approximately equal to the volume of one commutator segment. Each commutator segment has a main body and an anchor integrally formed with the main body. The commutator segments are spaced about a circle and then an insulating support member is molded to the commutator segments to fix the commutator segments to the support member.



Press plate for tightening the metal sheets of a stator core of an electric machine

Tue, 19 May 2015 08:00:00 EDT

A press plate (5) for tightening the metal sheets (2) of a stator core of an electric machine has an annular element (16) with a plurality of holes (17) provided at a side wall (11) thereof. The holes (17) have an elongated recessed top portion (20) and a cylindrical recessed bottom portion (21) extending from the ceiling (22) of the elongated recessed top portion (20).



Motor

Tue, 19 May 2015 08:00:00 EDT

A motor has a plurality of permanent magnet pieces aligned is such a manner as to surround an armature core and a magnetic-flux guide ring disposed between the permanent magnet pieces and the armature core for introducing a magnetic flux from the permanent magnet pieces to the armature core. The magnetic-flux guide ring has a confronting portion confronting each of the magnet pieces, an aperture formed in the confronting portion, and a connecting portion connecting adjacent two confronting portions. The aperture is formed in such a manner as to confront a boundary of adjacent magnet pieces.



Compressed motor winding

Tue, 19 May 2015 08:00:00 EDT

In one possible implementation, a method for forming a motor winding is provided which includes compressing a Litz wire to form a compacted Litz wire and forming the winding with the compacted Litz wire. In one possible embodiment, a motor winding is provided that has a high density multi-conductor wire bundle comprises of compacted Litz wire.



Armature winding of rotating electrical machine

Tue, 19 May 2015 08:00:00 EDT

According to one embodiment, there is provided a 3-phase 2-pole 2-layer armature winding, housed in 72 slots provided in a laminated iron core, a winding of each phase including six parallel circuits separated into two phase belts. Upper coil pieces of first and fourth parallel circuits are placed at 3rd, 4th, 7th, and 12th positions, and lower coil pieces of the first and fourth parallel circuits are placed at 1st, 6th, 9th, and 10th positions, upper and lower coil pieces of second and fifth parallel circuits are placed at 2nd, 5th, 8th, and 11th positions, and upper coil pieces of third and six parallel circuits are placed at 1st, 6th, 9th, and 10th positions, and lower coil pieces of the third and six parallel circuits are placed at 3rd, 4th, 7th, and 12th positions, from the center of a pole.



Switch type DC brushless electric machine having auxiliary excitation winding set

Tue, 19 May 2015 08:00:00 EDT

The present invention provides an auxiliary excitation winding set to be installed at the rotary part of the electric machine (104) composed of a rotary part of the permanent magnetic electric machine or a rotary part of the reluctance electric machine of the switched DC brushless electric machine (1000), and an electric conductive annular brush device (107) is served as an interface for transmitting the electric power, thereby inputting the excitation electric power to the auxiliary excitation winding set; and through controlling the value and the polarity of excitation voltage and current, the magnetic pole of the rotary part of magnet-motive electric machine (104) of the switched DC brushless electric machine (1000) can be performed with the excitation effect of auxiliary excitation or differential excitation or auxiliary compound excitation or differential compound excitation.



Coil for an electric machine and method for producing a coil

Tue, 19 May 2015 08:00:00 EDT

The invention relates to a coil (1), in particular for an electric machine, in particular a transformator or an electromechanical converter, in particular an electric motor, for guiding an electric current for producing a magnetic field. Said coil consists of individual windings (2) that are essentially embodied as a flat body thus obtaining a tightly packed structure when the windings (2) are superimposed, and respectively, each winding (2) comprises at least one circulating conductor path with the exception of at least one electric interruption on one side. Said conductor path of a winding (2) comprises, on one point, an electroconductive connection with a conductor path of an adjacent winding (2). The windings (2) are incidentally, essentially electrically isolated to each other.



Permanent magnet machine with different pole arc angles

Tue, 19 May 2015 08:00:00 EDT

An internal permanent magnet machine has multiple rotor sections, each section having multiple rotor laminations. Permanent magnets are placed asymmetrically in lamination openings to attenuate oscillations in torque caused by harmonic components of magnetic flux. Asymmetry is achieved by placing adjacent permanent magnets or magnet sets on the rotor periphery with different rotor magnetic pole arc angles.



Rotor of a motor

Tue, 19 May 2015 08:00:00 EDT

Provided is a rotor core of a motor, the rotor core, the rotor core including a thin disk-shaped rotor core member, a shaft hole penetratively formed at a center of the rotor core member, a shaft press-fitted into the shaft hole, a plurality of magnet insertion holes penetratively formed at a position near to a periphery of the rotor core member for inserted coupling by a magnet, and a magnet fixing unit formed by stacking the rotor core members each at a predetermined height, and press-fitting the shaft into the shaft hole, wherein the rotor core members are stacked at a predetermined height, and the shaft is inserted into the shaft hole.



Rotor lamination stress relief

Tue, 19 May 2015 08:00:00 EDT

A multilayer laminated rotor is mountable on a shaft for rotation relative to a stator of a rotary electric machine arrangement. The rotor has a plurality of laminas, joined together, and voids for receiving magnets. An annular rotor section, which surrounds a shaft opening within which the shaft is receivable, extends between the shaft opening and a radially outer circumferential rotor surface. The annular section mentioned includes an undulating series of the voids in void groups extending from the radially outer circumferential rotor surface inwardly toward the shaft opening and then back toward the radially outer circumferential rotor surface, as well as a solid radially interior portion without any of the voids. Distal voids in the void groups include curved, arcuate, or recurved stress relieving features extending inwardly from radially innermost corner locations of the distal voids.