Subscribe: Applied and Environmental Microbiology Biodegradation
http://intl-aem.asm.org/rss/Biodegradation.xml
Added By: Feedage Forager Feedage Grade C rated
Language:
Tags:
acid  activities  brown rot  brown  decay  enzyme  enzymes  fungal  hydrolases  pet hydrolases  pet  pinicola  rot  species  wood 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: Applied and Environmental Microbiology Biodegradation

Applied and Environmental Microbiology Biodegradation



Applied and Environmental Microbiology RSS feed -- recent Biodegradation articles



 



Polyporales Brown Rot Species Fomitopsis pinicola: Enzyme Activity Profiles, Oxalic Acid Production, and Fe3+-Reducing Metabolite Secretion [Biodegradation]

2018-04-02T08:00:56-07:00

Basidiomycota fungi in the order Polyporales are specified to decomposition of dead wood and woody debris and thereby are crucial players in the degradation of organic matter and cycling of carbon in the forest ecosystems. Polyporales wood-decaying species comprise both white rot and brown rot fungi, based on their mode of wood decay. While the white rot fungi are able to attack and decompose all the lignocellulose biopolymers, the brown rot species mainly cause the destruction of wood polysaccharides, with minor modification of the lignin units. The biochemical mechanism of brown rot decay of wood is still unclear and has been proposed to include a combination of nonenzymatic oxidation reactions and carbohydrate-active enzymes. Therefore, a linking approach is needed to dissect the fungal brown rot processes. We studied the brown rot Polyporales species Fomitopsis pinicola by following mycelial growth and enzyme activity patterns and generating metabolites together with Fenton-promoting Fe3+-reducing activity for 3 months in submerged cultures supplemented with spruce wood. Enzyme activities to degrade hemicellulose, cellulose, proteins, and chitin were produced by three Finnish isolates of F. pinicola. Substantial secretion of oxalic acid and a decrease in pH were notable. Aromatic compounds and metabolites were observed to accumulate in the fungal cultures, with some metabolites having Fe3+-reducing activity. Thus, F. pinicola demonstrates a pattern of strong mycelial growth leading to the active production of carbohydrate- and protein-active enzymes, together with the promotion of Fenton biochemistry. Our findings point to fungal species-level "fine-tuning" and variations in the biochemical reactions leading to the brown rot type of wood decay.

IMPORTANCE Fomitopsis pinicola is a common fungal species in boreal and temperate forests in the Northern Hemisphere encountered as a wood-colonizing saprotroph and tree pathogen, causing a severe brown rot type of wood degradation. However, its lignocellulose-decomposing mechanisms have remained undiscovered. Our approach was to explore both the enzymatic activities and nonenzymatic Fenton reaction-promoting activities (Fe3+ reduction and metabolite production) by cultivating three isolates of F. pinicola in wood-supplemented cultures. Our findings on the simultaneous production of versatile enzyme activities, including those of endoglucanase, xylanase, β-glucosidase, chitinase, and acid peptidase, together with generation of low pH, accumulation of oxalic acid, and Fe3+-reducing metabolites, increase the variations of fungal brown rot decay mechanisms. Furthermore, these findings will aid us in revealing the wood decay proteomic, transcriptomic, and metabolic activities of this ecologically important forest fungal species.




New Insights into the Function and Global Distribution of Polyethylene Terephthalate (PET)-Degrading Bacteria and Enzymes in Marine and Terrestrial Metagenomes [Biodegradation]

2018-04-02T08:00:56-07:00

Polyethylene terephthalate (PET) is one of the most important synthetic polymers used today. Unfortunately, the polymers accumulate in nature and to date no highly active enzymes are known that can degrade it at high velocity. Enzymes involved in PET degradation are mainly α- and β-hydrolases, like cutinases and related enzymes (EC 3.1.1). Currently, only a small number of such enzymes are well characterized. In this work, a search algorithm was developed that identified 504 possible PET hydrolase candidate genes from various databases. A further global search that comprised more than 16 Gb of sequence information within 108 marine and 25 terrestrial metagenomes obtained from the Integrated Microbial Genome (IMG) database detected 349 putative PET hydrolases. Heterologous expression of four such candidate enzymes verified the function of these enzymes and confirmed the usefulness of the developed search algorithm. In this way, two novel and thermostable enzymes with high potential for downstream application were partially characterized. Clustering of 504 novel enzyme candidates based on amino acid similarities indicated that PET hydrolases mainly occur in the phyla of Actinobacteria, Proteobacteria, and Bacteroidetes. Within the Proteobacteria, the Betaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria were the main hosts. Remarkably enough, in the marine environment, bacteria affiliated with the phylum Bacteroidetes appear to be the main hosts of PET hydrolase genes, rather than Actinobacteria or Proteobacteria, as observed for the terrestrial metagenomes. Our data further imply that PET hydrolases are truly rare enzymes. The highest occurrence of 1.5 hits/Mb was observed in sequences from a sample site containing crude oil.

IMPORTANCE Polyethylene terephthalate (PET) accumulates in our environment without significant microbial conversion. Although a few PET hydrolases are already known, it is still unknown how frequently they appear and with which main bacterial phyla they are affiliated. In this study, deep sequence mining of protein databases and metagenomes demonstrated that PET hydrolases indeed occur at very low frequencies in the environment. Furthermore, it was possible to link them to phyla that were previously not known to harbor such enzymes. This work contributes novel knowledge on the phylogenetic relationships, the recent evolution, and the global distribution of PET hydrolases. Finally, we describe the biochemical traits of four novel PET hydrolases.