Subscribe: Diabetes Pharmacology and Therapeutics
Preview: Diabetes Pharmacology and Therapeutics

Diabetes Pharmacology and Therapeutics

Diabetes RSS feed -- recent Pharmacology and Therapeutics articles


Engineering Glucose Responsiveness Into Insulin


Insulin has a narrow therapeutic index, reflected in a small margin between a dose that achieves good glycemic control and one that causes hypoglycemia. Once injected, the clearance of exogenous insulin is invariant regardless of blood glucose, aggravating the potential to cause hypoglycemia. We sought to create a "smart" insulin, one that can alter insulin clearance and hence insulin action in response to blood glucose, mitigating risk for hypoglycemia. The approach added saccharide units to insulin to create insulin analogs with affinity for both the insulin receptor (IR) and mannose receptor C-type 1 (MR), which functions to clear endogenous mannosylated proteins, a principle used to endow insulin analogs with glucose responsivity. Iteration of these efforts culminated in the discovery of MK-2640, and its in vitro and in vivo preclinical properties are detailed in this report. In glucose clamp experiments conducted in healthy dogs, as plasma glucose was lowered stepwise from 280 mg/dL to 80 mg/dL, progressively more MK-2640 was cleared via MR, reducing by ~30% its availability for binding to the IR. In dose escalations studies in diabetic minipigs, a higher therapeutic index for MK-2640 (threefold) was observed versus regular insulin (1.3-fold).

Mechanisms to Elevate Endogenous GLP-1 Beyond Injectable GLP-1 Analogs and Metabolic Surgery


Therapeutic engineering of glucagon-like peptide 1 (GLP-1) has enabled development of new medicines to treat type 2 diabetes. These injectable analogs achieve robust glycemic control by increasing concentrations of "GLP-1 equivalents" (~50 pmol/L). Similar levels of endogenous GLP-1 occur after gastric bypass surgery, and mechanistic studies indicate glucose lowering by these procedures is driven by GLP-1. Therefore, because of the remarkable signaling and secretory capacity of the GLP-1 system, we sought to discover mechanisms that increase GLP-1 pharmacologically. To study active GLP-1, glucose-dependent insulinotropic polypeptide receptor (Gipr)–deficient mice receiving background dipeptidyl peptidase 4 (DPP4) inhibitor treatment were characterized as a model for evaluating oral agents that increase circulating GLP-1. A somatostatin receptor 5 antagonist, which blunts inhibition of GLP-1 release, and agonists for TGR5 and GPR40, which stimulate GLP-1 secretion, were investigated alone and in combination with the DPP4 inhibitor sitagliptin; these only modestly increased GLP-1 (~5–30 pmol/L). However, combining molecules to simultaneously intervene at multiple regulatory nodes synergistically elevated active GLP-1 to unprecedented concentrations (~300–400 pmol/L), drastically reducing glucose in Gipr null and Leprdb/db mice in a GLP-1 receptor–dependent manner. Our studies demonstrate that complementary pathways can be engaged to robustly increase GLP-1 without invasive surgical or injection regimens.

The Synthetic Microneurotrophin BNN27 Affects Retinal Function in Rats With Streptozotocin-Induced Diabetes


BNN27, a C17-spiroepoxy derivative of DHEA, was shown to have antiapoptotic properties via mechanisms involving the nerve growth factor receptors (tropomyosin-related kinase A [TrkA]/neurotrophin receptor p75 [p75NTR]). In this study, we examined the effects of BNN27 on neural/glial cell function, apoptosis, and inflammation in the experimental rat streptozotocin (STZ) model of diabetic retinopathy (DR). The ability of BNN27 to activate the TrkA receptor and regulate p75NTR expression was investigated. BNN27 (2,10, and 50 mg/kg i.p. for 7 days) administration 4 weeks post–STZ injection (paradigm A) reversed the diabetes-induced glial activation and loss of function of amacrine cells (brain nitric oxide synthetase/tyrosine hydroxylase expression) and ganglion cell axons via a TrkA receptor (TrkAR)-dependent mechanism. BNN27 activated/phosphorylated the TrkAY490 residue in the absence but not the presence of TrkAR inhibitor and abolished the diabetes-induced increase in p75NTR expression. However, it had no effect on retinal cell death (TUNEL+ cells). A similar result was observed when BNN27 (10 mg/kg i.p.) was administered at the onset of diabetes, every other day for 4 weeks (paradigm B). However, BNN27 decreased the activation of caspase-3 in both paradigms. Finally, BNN27 reduced the proinflammatory (TNFα and IL-1β) and increased the anti-inflammatory (IL-10 and IL-4) cytokine levels. These findings suggest that BNN27 has the pharmacological profile of a therapeutic for DR, since it targets both the neurodegenerative and inflammatory components of the disease.