Subscribe: Diabetes Islet Studies
Added By: Feedage Forager Feedage Grade B rated
beta cell  beta cells  beta  cell function  cell  cells  diabetes  expression  function  glucose  insulin secretion  insulin  islet 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: Diabetes Islet Studies

Diabetes Islet Studies

Diabetes RSS feed -- recent Islet Studies articles


CDKN2A/B T2D Genome-Wide Association Study Risk SNPs Impact Locus Gene Expression and Proliferation in Human Islets


Genome-wide association studies link the CDKN2A/B locus with type 2 diabetes (T2D) risk, but mechanisms increasing risk remain unknown. The CDKN2A/B locus encodes cell cycle inhibitors p14, p15, and p16; MTAP; and ANRIL, a long noncoding RNA. The goal of this study was to determine whether CDKN2A/B T2D risk SNPs impact locus gene expression, insulin secretion, or β-cell proliferation in human islets. Islets from donors without diabetes (n = 95) were tested for SNP genotype (rs10811661, rs2383208, rs564398, and rs10757283), gene expression (p14, p15, p16, MTAP, ANRIL, PCNA, KI67, and CCND2), insulin secretion (n = 61), and β-cell proliferation (n = 47). Intriguingly, locus genes were coregulated in islets in two physically overlapping cassettes: p14-p16-ANRIL, which increased with age, and MTAP-p15, which did not. Risk alleles at rs10811661 and rs2383208 were differentially associated with expression of ANRIL, but not p14, p15, p16, or MTAP, in age-dependent fashion, such that younger homozygous risk donors had higher ANRIL expression, equivalent to older donor levels. We identified several risk SNP combinations that may impact locus gene expression, suggesting possible mechanisms by which SNPs impact locus biology. Risk allele carriers at ANRIL coding SNP rs564398 had reduced β-cell proliferation index. In conclusion, CDKN2A/B locus SNPs may impact T2D risk by modulating islet gene expression and β-cell proliferation.

Elevated Medium-Chain Acylcarnitines Are Associated With Gestational Diabetes Mellitus and Early Progression to Type 2 Diabetes and Induce Pancreatic {beta}-Cell Dysfunction


Specific circulating metabolites have emerged as important risk factors for the development of diabetes. The acylcarnitines (acylCs) are a family of metabolites known to be elevated in type 2 diabetes (T2D) and linked to peripheral insulin resistance. However, the effect of acylCs on pancreatic β-cell function is not well understood. Here, we profiled circulating acylCs in two diabetes cohorts: 1) women with gestational diabetes mellitus (GDM) and 2) women with recent GDM who later developed impaired glucose tolerance (IGT), new-onset T2D, or returned to normoglycemia within a 2-year follow-up period. We observed a specific elevation in serum medium-chain (M)-acylCs, particularly hexanoyl- and octanoylcarnitine, among women with GDM and individuals with T2D without alteration in long-chain acylCs. Mice treated with M-acylCs exhibited glucose intolerance, attributed to impaired insulin secretion. Murine and human islets exposed to elevated levels of M-acylCs developed defects in glucose-stimulated insulin secretion and this was directly linked to reduced mitochondrial respiratory capacity and subsequent ability to couple glucose metabolism to insulin secretion. In conclusion, our study reveals that an elevation in circulating M-acylCs is associated with GDM and early stages of T2D onset and that this elevation directly impairs β-cell function.

Role of Protein Phosphatase 1 and Inhibitor of Protein Phosphatase 1 in Nitric Oxide-Dependent Inhibition of the DNA Damage Response in Pancreatic {beta}-Cells


Nitric oxide is produced at micromolar levels by pancreatic β-cells during exposure to proinflammatory cytokines. While classically viewed as damaging, nitric oxide also activates pathways that promote β-cell survival. We have shown that nitric oxide, in a cell type–selective manner, inhibits the DNA damage response (DDR) and, in doing so, protects β-cells from DNA damage–induced apoptosis. This study explores potential mechanisms by which nitric oxide inhibits DDR signaling. We show that inhibition of DDR signaling (measured by H2AX formation and the phosphorylation of KAP1) is selective for nitric oxide, as other forms of reactive oxygen/nitrogen species do not impair DDR signaling. The kinetics and broad range of DDR substrates that are inhibited suggest that protein phosphatase activation may be one mechanism by which nitric oxide attenuates DDR signaling in β-cells. While protein phosphatase 1 (PP1) is a primary regulator of DDR signaling and an inhibitor of PP1 (IPP1) is selectively expressed only in β-cells, disruption of either IPP1 or PP1 does not modify the inhibitory actions of nitric oxide on DDR signaling in β-cells. These findings support a PP1-independent mechanism by which nitric oxide selectively impairs DDR signaling and protects β-cells from DNA damage–induced apoptosis.

Postnatal Ontogenesis of the Islet Circadian Clock Plays a Contributory Role in {beta}-Cell Maturation Process


Development of cell replacement therapies in diabetes requires understanding of the molecular underpinnings of β-cell maturation. The circadian clock regulates diverse cellular functions important for regulation of β-cell function and turnover. However, postnatal ontogenesis of the islet circadian clock and its potential role in β-cell maturation remain unknown. To address this, we studied wild-type Sprague-Dawley as well as Period1 luciferase transgenic (Per1:LUC) rats to determine circadian clock function, clock protein expression, and diurnal insulin secretion during islet development and maturation process. We additionally studied β-cell–specific Bmal1-deficient mice to elucidate a potential role of this key circadian transcription factor in β-cell functional and transcriptional maturation. We report that emergence of the islet circadian clock 1) occurs during the early postnatal period, 2) depends on the establishment of global behavioral circadian rhythms, and 3) leads to the induction of diurnal insulin secretion and gene expression. Islet cell maturation was also characterized by induction in the expression of circadian transcription factor BMAL1, deletion of which altered postnatal development of glucose-stimulated insulin secretion and the associated transcriptional network. Postnatal development of the islet circadian clock contributes to early-life β-cell maturation and should be considered for optimal design of future β-cell replacement strategies in diabetes.

Highly Proliferative {alpha}-Cell-Related Islet Endocrine Cells in Human Pancreata


The proliferative response of non-β islet endocrine cells in response to type 1 diabetes (T1D) remains undefined. We quantified islet endocrine cell proliferation in a large collection of nondiabetic control and T1D human pancreata across a wide range of ages. Surprisingly, islet endocrine cells with abundant proliferation were present in many adolescent and young-adult T1D pancreata. But the proliferative islet endocrine cells were also present in similar abundance within control samples. We queried the proliferating islet cells with antisera against various islet hormones. Although pancreatic polypeptide, somatostatin, and ghrelin cells did not exhibit frequent proliferation, glucagon-expressing α-cells were highly proliferative in many adolescent and young-adult samples. Notably, α-cells only comprised a fraction (~1/3) of the proliferative islet cells within those samples; most proliferative cells did not express islet hormones. The proliferative hormone-negative cells uniformly contained immunoreactivity for ARX (indicating α-cell fate) and cytoplasmic Sox9 (Sox9Cyt). These hormone-negative cells represented the majority of islet endocrine Ki67+ nuclei and were conserved from infancy through young adulthood. Our studies reveal a novel population of highly proliferative ARX+ Sox9Cyt hormone-negative cells and suggest the possibility of previously unrecognized islet development and/or lineage plasticity within adolescent and adult human pancreata.

The p300 and CBP Transcriptional Coactivators Are Required for {beta}-Cell and {alpha}-Cell Proliferation


p300 (EP300) and CBP (CREBBP) are transcriptional coactivators with histone acetyltransferase activity. Various β-cell transcription factors can recruit p300/CBP, and thus the coactivators could be important for β-cell function and health in vivo. We hypothesized that p300/CBP contribute to the development and proper function of pancreatic islets. To test this, we bred and studied mice lacking p300/CBP in their islets. Mice lacking either p300 or CBP in islets developed glucose intolerance attributable to impaired insulin secretion, together with reduced α- and β-cell area and islet insulin content. These phenotypes were exacerbated in mice with only a single copy of p300 or CBP expressed in islets. Removing p300 in pancreatic endocrine progenitors impaired proliferation of neonatal α- and β-cells. Mice lacking all four copies of p300/CBP in pancreatic endocrine progenitors failed to establish α- and β-cell mass postnatally. Transcriptomic analyses revealed significant overlaps between p300/CBP-downregulated genes and genes downregulated in Hnf1α-null islets and Nkx2.2-null islets, among others. Furthermore, p300/CBP are important for the acetylation of H3K27 at loci downregulated in Hnf1α-null islets. We conclude that p300 and CBP are limiting cofactors for islet development, and hence for postnatal glucose homeostasis, with some functional redundancy.

SRp55 Regulates a Splicing Network That Controls Human Pancreatic {beta}-Cell Function and Survival


Progressive failure of insulin-producing β-cells is the central event leading to diabetes, but the signaling networks controlling β-cell fate remain poorly understood. Here we show that SRp55, a splicing factor regulated by the diabetes susceptibility gene GLIS3, has a major role in maintaining the function and survival of human β-cells. RNA sequencing analysis revealed that SRp55 regulates the splicing of genes involved in cell survival and death, insulin secretion, and c-Jun N-terminal kinase (JNK) signaling. In particular, SRp55-mediated splicing changes modulate the function of the proapoptotic proteins BIM and BAX, JNK signaling, and endoplasmic reticulum stress, explaining why SRp55 depletion triggers β-cell apoptosis. Furthermore, SRp55 depletion inhibits β-cell mitochondrial function, explaining the observed decrease in insulin release. These data unveil a novel layer of regulation of human β-cell function and survival, namely alternative splicing modulated by key splicing regulators such as SRp55, that may cross talk with candidate genes for diabetes.

Pancreatic Pericytes Support {beta}-Cell Function in a Tcf7l2-Dependent Manner


Polymorphism in TCF7L2, a component of the canonical Wnt signaling pathway, has a strong association with β-cell dysfunction and type 2 diabetes through a mechanism that has yet to be defined. β-Cells rely on cells in their microenvironment, including pericytes, for their proper function. Here, we show that Tcf7l2 activity in pancreatic pericytes is required for β-cell function. Transgenic mice in which Tcf7l2 was selectively inactivated in their pancreatic pericytes exhibited impaired glucose tolerance due to compromised β-cell function and glucose-stimulated insulin secretion. Inactivation of pericytic Tcf7l2 was associated with impaired expression of genes required for β-cell function and maturity in isolated islets. In addition, we identified Tcf7l2-dependent pericytic expression of secreted factors shown to promote β-cell function, including bone morphogenetic protein 4 (BMP4). Finally, we show that exogenous BMP4 is sufficient to rescue the impaired glucose-stimulated insulin secretion of transgenic mice, pointing to a potential mechanism through which pericytic Tcf7l2 activity affects β-cells. To conclude, we suggest that pancreatic pericytes produce secreted factors, including BMP4, in a Tcf7l2-dependent manner to support β-cell function. Our findings thus propose a potential cellular mechanism through which abnormal TCF7L2 activity predisposes individuals to diabetes and implicates abnormalities in the islet microenvironment in this disease.

GATA6 Controls Insulin Biosynthesis and Secretion in Adult {beta}-Cells


GATA4 and GATA6 play essential, but redundant, roles in pancreas formation in mice, and GATA6 mutations cause pancreatic agenesis in humans. GATA6 mutations have also recently been linked to adult-onset diabetes, with subclinical or no exocrine insufficiency, suggesting an important role for GATA6 in human β-cell physiology. To investigate the role of GATA6 in the adult endocrine pancreas, we generated mice in which Gata6 is specifically inactivated in the pancreas. These mice develop glucose intolerance. Islets deficient in GATA6 activity display decreased insulin content and impaired insulin secretion. Gata6-deficient β-cells exhibit ultrastructural abnormalities, including increased immature insulin granules, swollen mitochondria, and disorganized endoplasmic reticulum. We also demonstrate that Pdx1 expression in adult β-cells depends on GATA sites in transgenic reporter mice and that loss of GATA6 greatly affects β-cell–specific gene expression. These findings demonstrate the essential role of GATA6 in β-cell function.

MondoA Is an Essential Glucose-Responsive Transcription Factor in Human Pancreatic {beta}-Cells


Although the mechanisms by which glucose regulates insulin secretion from pancreatic β-cells are now well described, the way glucose modulates gene expression in such cells needs more understanding. Here, we demonstrate that MondoA, but not its paralog carbohydrate-responsive element–binding protein, is the predominant glucose-responsive transcription factor in human pancreatic β-EndoC-βH1 cells and in human islets. In high-glucose conditions, MondoA shuttles to the nucleus where it is required for the induction of the glucose-responsive genes arrestin domain–containing protein 4 (ARRDC4) and thioredoxin interacting protein (TXNIP), the latter being a protein strongly linked to β-cell dysfunction and diabetes. Importantly, increasing cAMP signaling in human β-cells, using forskolin or the glucagon-like peptide 1 mimetic Exendin-4, inhibits the shuttling of MondoA and potently inhibits TXNIP and ARRDC4 expression. Furthermore, we demonstrate that silencing MondoA expression improves glucose uptake in EndoC-βH1 cells. These results highlight MondoA as a novel target in β-cells that coordinates transcriptional response to elevated glucose levels.

miR-204 Controls Glucagon-Like Peptide 1 Receptor Expression and Agonist Function


Glucagon-like peptide 1 receptor (GLP1R) agonists are widely used to treat diabetes. However, their function is dependent on adequate GLP1R expression, which is downregulated in diabetes. GLP1R is highly expressed on pancreatic β-cells, and activation by endogenous incretin or GLP1R agonists increases cAMP generation, which stimulates glucose-induced β-cell insulin secretion and helps maintain glucose homeostasis. We now have discovered that the highly β-cell–enriched microRNA, miR-204, directly targets the 3' UTR of GLP1R and thereby downregulates its expression in the β-cell–derived rat INS-1 cell line and primary mouse and human islets. Furthermore, in vivo deletion of miR-204 promoted islet GLP1R expression and enhanced responsiveness to GLP1R agonists, resulting in improved glucose tolerance, cAMP production, and insulin secretion as well as protection against diabetes. Since we recently identified thioredoxin-interacting protein (TXNIP) as an upstream regulator of miR-204, we also assessed whether in vivo deletion of TXNIP could mimic that of miR-204. Indeed, it also enhanced islet GLP1R expression and GLP1R agonist–induced insulin secretion and glucose tolerance. Thus, the present studies show for the first time that GLP1R is under the control of a microRNA, miR-204, and uncover a previously unappreciated link between TXNIP and incretin action.

Clec16a, Nrdp1, and USP8 Form a Ubiquitin-Dependent Tripartite Complex That Regulates {beta}-Cell Mitophagy


Mitophagy is a cellular quality-control pathway, which is essential for elimination of unhealthy mitochondria. While mitophagy is critical to pancreatic β-cell function, the posttranslational signals governing β-cell mitochondrial turnover are unknown. Here, we report that ubiquitination is essential for the assembly of a mitophagy regulatory complex, comprised of the E3 ligase Nrdp1, the deubiquitinase enzyme USP8, and Clec16a, a mediator of β-cell mitophagy with unclear function. We discover that the diabetes gene Clec16a encodes an E3 ligase, which promotes nondegradative ubiquitin conjugates to direct its mitophagy effectors and stabilize the Clec16a-Nrdp1-USP8 complex. Inhibition of the Clec16a pathway by the chemotherapeutic lenalidomide, a selective ubiquitin ligase inhibitor associated with new-onset diabetes, impairs β-cell mitophagy, oxygen consumption, and insulin secretion. Indeed, patients treated with lenalidomide develop compromised β-cell function. Moreover, the β-cell Clec16a-Nrdp1-USP8 mitophagy complex is destabilized and dysfunctional after lenalidomide treatment as well as after glucolipotoxic stress. Thus, the Clec16a-Nrdp1-USP8 complex relies on ubiquitin signals to promote mitophagy and maintain mitochondrial quality control necessary for optimal β-cell function.

Glucocorticoids Reprogram {beta}-Cell Signaling to Preserve Insulin Secretion


Excessive glucocorticoid exposure has been shown to be deleterious for pancreatic β-cell function and insulin release. However, glucocorticoids at physiological levels are essential for many homeostatic processes, including glycemic control. We show that corticosterone and cortisol and their less active precursors 11-dehydrocorticosterone (11-DHC) and cortisone suppress voltage-dependent Ca2+ channel function and Ca2+ fluxes in rodent as well as in human β-cells. However, insulin secretion, maximal ATP/ADP responses to glucose, and β-cell identity were all unaffected. Further examination revealed the upregulation of parallel amplifying cAMP signals and an increase in the number of membrane-docked insulin secretory granules. Effects of 11-DHC could be prevented by lipotoxicity and were associated with paracrine regulation of glucocorticoid activity because global deletion of 11β-hydroxysteroid dehydrogenase type 1 normalized Ca2+ and cAMP responses. Thus, we have identified an enzymatically amplified feedback loop whereby glucocorticoids boost cAMP to maintain insulin secretion in the face of perturbed ionic signals. Failure of this protective mechanism may contribute to diabetes in states of glucocorticoid excess, such as Cushing syndrome, which are associated with frank dyslipidemia.