Subscribe: 24 ways
http://24ways.org/rss/?
Added By: Feedage Forager Feedage Grade B rated
Language: English
Tags:
cadence  calculator  code  lights  logic level  pins  raspberry  research  team  test  things  time  user research  user  users  week 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: 24 ways

24 ways



Web design and development articles and tutorials for advent.



Published: Sat, 03 Dec 2016 08:15:32 +0000

Last Build Date: Sat, 03 Dec 2016 08:15:32 +0000

 



A Favor for Your Future Self

Sat, 03 Dec 2016 12:00:00 +0000

Alicia Sedlock embodies the Ghost of Code Reviews Yet-to-Come with a call to start testing. Do you know your unit from your integration, your acceptance from your visual regression? And will you pass the ultimate Christmas test; are you naughty or nice? We tend to think about the future when we build things. What might we want to be able to add later? How can we refactor this down the road? Will this be easy to maintain in six months, a year, two years? As best we can, we try to think about the what-ifs, and build our websites, systems, and applications with this lens. We comment our code to explain what we knew at the time and how that impacted how we built something. We add to-dos to the things we want to change. These are all great things! Whether or not we come back to those to-dos, refactor that one thing, or add new features, we put in a bit of effort up front just in case to give us a bit of safety later. I want to talk about a situation that Past Alicia and Team couldn’t even foresee or plan for. Recently, the startup I was a part of had to remove large sections of our website. Not just content, but entire pages and functionality. It wasn’t a very pleasant experience, not only for the reason why we had to remove so much of what we had built, but also because it’s the ultimate “I really hope this doesn’t break something else” situation. It was a stressful and tedious effort of triple checking that the things we were removing weren’t dependencies elsewhere. To be honest, we wouldn’t have been able to do this with any amount of success or confidence without our test suite. Writing tests for code is one of those things that developers really, really don’t want to do. It’s one of the easiest things to cut in the development process, and there’s often a struggle to have developers start writing tests in the first place. One of the best lessons the web has taught us is that we can’t, in good faith, trust the happy path. We must make sure ourselves, and our users, aren’t in a tough spot later on because we only thought of the best case scenarios. JavaScript Regardless of your opinion on whether or not everything needs to be built primarily with JavaScript, if you’re choosing to build a JavaScript heavy app, you absolutely should be writing some combination of unit and integration tests. Unit tests are for testing extremely isolated and small pieces of code, which we refer to as the units themselves. Great for reused functions and small, scoped areas, this is the closest you examine your code with the testing microscope. For example, if we were to build a calculator, the most minute piece we could test could be the basic operations. /* * This example uses a test framework called Jasmine */ describe("Calculator Operations", function () { it("Should add two numbers", function () { // Say we have a calculator Calculator.init(); // We can run the function that does our addition calculation... var result = Calculator.addNumbers(7,3); // ...and ensure we're getting the right output expect(result).toBe(10); }); }); Even though these teeny bits work in isolation, we should ensure that connecting the large pieces work, as well. This is where integration tests excel. These tests ensure that two or more different areas of code, that may not directly know about each other, still behave in expected ways. Let’s build upon our calculator - we may want the operations to be saved in memory after a calculation runs. This isn’t as suited for a unit test because there are a few other moving pieces involved in the process (the calculations, checking if the result was an error, etc.). it(“Should remember the last calculation”, function () { // Run an operation Calculator.addNumbers(7,10); // Expect something else to have happened as a result expect(Calculator.updateCurrentValue).toHaveBeenCalled(); expect(Calculator.currentValue).toBe(17); }); Unit and[...]



Creating a Weekly Research Cadence

Fri, 02 Dec 2016 12:00:00 +0000

Wren Lanier sets aside time to explore the benefits of a regular schedule for user research. Santa’s elves quickly discovered the benefits of working to a fixed schedule, which is of course why we don’t get presents at Easter. Working on a product team, it’s easy to get hyper-focused on building features and lose sight of your users and their daily challenges. User research can be time-consuming to set up, so it often becomes ad-hoc and irregular, only performed in response to a particular question or concern. But without frequent touch points and opportunities for discovery, your product will stagnate and become less and less relevant. Setting up an efficient cadence of weekly research conversations will re-focus your team on user problems and provide a steady stream of insights for product development. As my team transitioned into a Lean process earlier this year, we needed a way to get more feedback from users in a short amount of time. Our users are internet marketers—always busy and often difficult to reach. Scheduling research took days of emailing back and forth to find mutually agreeable times, and juggling one-off conversations made it difficult to connect with more than one or two people per week. The slow pace of research was allowing additional risk to creep into our product development. I wanted to find a way for our team to test ideas and validate assumptions sooner and more often—but without increasing the administrative burden of scheduling. The solution: creating a regular cadence of research and testing that required a minimum of effort to coordinate. Setting up a weekly user research cadence accelerated our learning and built momentum behind strategic experiments. By dedicating time every week to talk to a few users, we made ongoing research a painless part of every weekly sprint. But increasing the frequency of our research had other benefits as well. With only five working days between sessions, a weekly cadence forced us to keep our work small and iterative. Committing to testing something every week meant showing work earlier and more often than we might have preferred—pushing us out of your comfort zone into a process of more rapid experimentation. Best of all, frequent conversations with users helped us become more customer-focused. After just a few weeks in a consistent research cadence, I noticed user feedback weaving itself through our planning and strategy sessions. Comments like “Remember what Jenna said last week, about not being able to customize her lists?” would pop up as frequent reference points to guide our decisions. As discussions become less about subjective opinions and more about responding to user needs, we saw immediate improvement in the quality of our solutions. Establishing an efficient recruitment process The key to creating a regular cadence of ongoing user research is an efficient recruitment and scheduling process—along with a commitment to prioritize the time needed for research conversations. This is an invaluable tool for product teams (whether or not they follow a Lean process), but could easily be adapted for content strategy teams, agency teams, a UX team of one, or any other project that would benefit from short, frequent conversations with users. The process I use requires a few hours of setup time at the beginning, but pays off in better learning and better releases over the long run. Almost any team could use this as a starting point and adapt it to their own needs. Pick a dedicated time each week for research In order to make research a priority, we started by choosing a time each week when everyone on the product team was available. Between stand-ups, grooming sessions, and roadmap reviews, it wasn’t easy to do! Nevertheless, it’s important to include as many people as possible in conversations with your users. Getting a second-hand summary of research results doesn’t have the same impact as hearing someone describe their frustrations and conc[...]



Internet of Stranger Things

Thu, 01 Dec 2016 12:00:00 +0000

Seb Lee-Delisle lights up our 2016 advent series with an illuminating guide to making your own Stranger Things style fairy lights to pick up messages from the upside-down (also known as the Internet). This year I’ve been running a workshop about using JavaScript and Node to work with all different kinds of electronics on the Raspberry Pi. So especially for 24 ways I’m going to show you how I made a very special Raspberry Pi based internet connected project! And nothing says Christmas quite like a set of fairy lights connected to another dimension1. What you’ll see You can rig up the fairy lights in your home, with the scrawly letters written under each one. The people from the other side (i.e. the internet) will be able to write messages to you from their browser in real time. In fact why not try it now; check this web page. When you click the lights in your browser, my lights (and yours) will turn on and off in real life! (There may be a queue if there are lots of people accessing it, hit the “Send a message” button and wait your turn.) src="https://player.vimeo.com/video/193690168?autoplay=1&loop=1&color=ff0044&title=0&byline=0&portrait=0" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen> It’s all done with JavaScript, using Node running on both the Raspberry Pi and on the server. I’m using WebSockets to communicate in real time between the browser, server and Raspberry Pi. What you’ll need Raspberry Pi any of the following models: Zero (will need straight male header pins soldered2 and Micro USB OTG adaptor), A+, B+, 2, or 3 Micro SD card at least 4Gb Class 10 speed3 Micro USB power supply at least 2A USB Wifi dongle (unless you have a Pi 3 - that has wifi built in). Addressable fairy lights Logic level shifter (with pins soldered unless you want to do it!) Breadboard Jumper wires (3x male to male and 4x female to male) Optional but recommended Base board to hold the Pi and Breadboard (often comes with a breadboard!) Find links for where to buy all of these items that goes along with this tutorial. The total price should be around $1004. Setting up the Raspberry Pi You’ll need to install the SD card for the Raspberry Pi. You’ll find a link to download a disk image on the support document, ready-made with the Raspbian version of Linux, along with Node and all the files you need. Download it and write it to the SD card using the fantastic free software Etcher5. Next up you have to configure the wifi details on the SD card. If you plug the card into your computer you should see a drive called BOOT. There’s a text file on there called wpa_supplicant.conf. Open it up in your favourite text editor and replace mywifi and mypassword with your wifi details6. network={ ssid="mywifi" psk="mypassword" } Save the file, eject the card from your computer and plug it into the Raspberry Pi. If you have a base board or holder for the Raspberry Pi, attach it now. Then connect the wifi USB dongle7 and power supply, but don’t plug it in yet! Wiring! Time to wire everything up! First of all, push the Logic Level Converter into the middle of the breadboard: Logic Level Converter The logic level converter may be labelled differently from the one in the diagram but the pins are usually exactly the same internally. I would just make sure the pins marked HV (High Voltage) are on the bottom and LV (Low Voltage) are on the top. Raspberry Pi pins only output 3.3v but the lights need 5v. That’s why we need the logic level converter in there to boost up the signal. Connect the first two wires between the Raspberry Pi pins and the breadboard: Note that the pins on the Raspberry Pi are male, so you need a female to male jumper wire to connect between them and the breadboard. The colours don’t have to match but it’s easier to follow (and check) if you use the same ones as in the diagram. Then the next two: This is what you should have so [...]