Subscribe: Developmental Neurobiology
Added By: Feedage Forager Feedage Grade B rated
Language: English
accurate  axonal  axons  cns  development  developmental  expression  gene expression  gene  genes  gus  reference genes  reference  rgcs 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: Developmental Neurobiology

Developmental Neurobiology

Wiley Online Library : Developmental Neurobiology

Published: 2017-12-01T00:00:00-05:00


Identifying suitable reference genes for developing and injured mouse CNS tissues


Accurate quantification of gene expression is fundamental for understanding the molecular, genetic and functional bases of tissue development and diseases. Quantitative real-time PCR (qPCR) is now the most widely used method of quantifying gene expression due to its simplicity, specificity, sensitivity and wide quantification range. The use of appropriate reference genes to ensure accurate normalization is crucial for the correct quantification of gene expression from the early development, maturation, aging to injury processes in the central nervous system (CNS). In this study, we have determined the expression profiles of 12 candidate housekeeping genes (ACTB, CYC1, HMBS, GAPDH, HPRT1, RPL13A, YWHAZ, PPIA, RPLP0, TFRC, GUS and 18S rRNA) in developing mouse brain and spinal cord. Throughout development, there was a significant degree of fluctuations in their expression levels, indicating the importance and complexity of finding appropriate reference genes. Three software including BestKeeper, geNorm and NormFinder were used to evaluate the stability of potential reference genes. GUS was the most stable gene and GUS/YWHAZ were the most stable reference gene pair across different developmental stages in different CNS regions, whereas HPRT1 and GAPDH were the most variable genes and thus inappropriate to use as reference genes. Therefore, our results identified GUS and YWHAZ as the best combination of two reference genes for expression data normalization in CNS developmental studies. This article is protected by copyright. All rights reserved.

The axonal endoplasmic reticulum: One organelle—many functions in development, maintenance, and plasticity


The endoplasmic reticulum (ER) is highly conserved in eukaryotes and neurons. Indeed, the localization of the organelle in axons has been known for nearly half a century. However, the relevance of the axonal ER is only beginning to emerge. In this review, we discuss the structure of the ER in axons, examining the role of ER-shaping proteins and highlighting reticulons. We analyze the multiple functions of the ER and their potential contribution to axonal physiology. First, we examine the emerging roles of the axonal ER in lipid synthesis, protein translation, processing, quality control, and secretory trafficking of transmembrane proteins. We also review the impact of the ER on calcium dynamics, focusing on intracellular mechanisms and functions. We describe the interactions between the ER and endosomes, mitochondria, and synaptic vesicles. Finally, we analyze available proteomic data of axonal preparations to reveal the dynamic functionality of the ER in axons during development. We suggest that the dynamic proteome and a validated axonal interactome, together with state-of-the-art methodologies, may provide interesting research avenues in axon physiology that may extend to pathology and regeneration. © 2017 Wiley Periodicals, Inc. Develop Neurobiol, 2017

Developmental retinal ganglion cell death and retinotopicity of the murine retinocollicular projection


During mammalian visual system development, retinal ganglion cells (RGCs) undergo extensive apoptotic death. In mouse retina, approximately 50% of RGCs present at birth (postnatal day 0; P0) die by P5, at a time when axons innervate central targets such as the superior colliculus (SC). We examined whether RGCs that make short-range axonal targeting errors within the contralateral SC are more likely to be eliminated during the peak period of RGC death (P1-P5), compared with RGCs initially making more accurate retinotopic connections. A small volume (2.3 nL) of the retrograde nucleophilic dye Hoechst 33342 was injected into the superficial left SC of anesthetized neonatal C57Bl/6J mice at P1 (n = 5) or P4 (n = 8), and the contralateral retina wholemounted 12 hr later. Retrogradely labelled healthy and dying (pyknotic) RGCs were identified by morphological criteria and counted. The percentage of pyknotic RGCs was analyzed in relation to distance from the area of highest density RGC labelling, presumed to represent the most topographically accurate population. As expected, pyknotic RGC density at P1 was significantly greater than P4 (p < 0.05). At P4, the density of healthy RGCs 500–750 µm away from the central region was significantly less, although this was not reflected in altered pyknotic rates. However, at P1 there was a trend (p = 0.08) for an increased proportion of pyknotic RGCs, specifically in temporal parts of the retina outside the densely labelled center. Overall, the lack of consistent association between short-range targeting errors and cell death suggests that most postnatal RGC loss is not directly related to topographic accuracy. © 2017 Wiley Periodicals, Inc. Develop Neurobiol, 2017

Erbin and ErbB2 play roles in the sexual differentiation of the song system nucleus HVC in bengalese finches (Lonchura Striata var. domestica)


Song control nuclei have distinct sexual differences in songbirds. However, the mechanism that underlies the sexual differentiation of song nuclei is still not well understood. Using a combination of anatomical, pharmacological, genetic, and behavioral approaches, the present study investigated the role of erbb2 (a homolog of the avian erythroblastic leukemia viral oncogene homolog 2) and the erbb2-interacting gene, erbin, in the sexual differentiation of the song nucleus HVC in the Bengalese finch. We first found that both erbin and erbb2 were expressed in the developing HVC at posthatch day (PHD) 15 in a male-biased fashion using qRT-PCR and in situ hybridization. Following the addition of a pharmaceutical inhibitor of the ErbB2 signaling pathway to the culture medium, cell proliferation in the cultured ventricle zone (VZ) that overlies the developing HVC decreased significantly. After the injection of erbin- or erbb2-interfering lentiviruses into the HVC and its overlying VZ at PHD 15, the cell proliferation in the VZ at PHD 24, the number of the differentiated neurons (Hu+/BrdU+ or NeuN+/BrdU+) in the HVC at PHD 31 or PHD 130, and the number of RA-projecting cells at PHD 130 all decreased significantly. Additionally, the adult songs displayed serious abnormalities. Finally, 173 male-biased genes were expressed in the developing HVC at PHD 15 using cDNA microarrays, of which 27.2% were Z-linked genes and approximately 20 genes were involved in the Erbin- or ErbB2-related signaling pathways. Our results provide some specific genetic factors that contribute to neurogenesis and sex differentiation in a song nucleus of songbirds. © 2017 Wiley Periodicals, Inc. Develop Neurobiol, 2017

Regulation of plasma membrane expansion during axon formation


Here, will review current evidence regarding the signaling pathways and mechanisms underlying membrane addition at sites of active growth during axon formation. © 2017 Wiley Periodicals, Inc. Develop Neurobiol, 2017

To the end of the line: Axonal mRNA transport and local translation in health and neurodegenerative disease


Axons and growth cones, by their very nature far removed from the cell body, encounter unique environments and require distinct populations of proteins. It seems only natural, then, that they have developed mechanisms to locally synthesize a host of proteins required to perform their specialized functions. Acceptance of this ability has taken decades; however, there is now consensus that axons do indeed have the capacity for local translation, and that this capacity is even retained into adulthood. Accumulating evidence supports the role of locally synthesized proteins in the proper development, maintenance, and function of neurons, and newly emerging studies also suggest that disruption in this process has implications in a number of neurodevelopmental and neurodegenerative diseases. Here, we briefly review the long history of axonal mRNA localization and local translation, and the role that these locally synthesized proteins play in normal neuronal function. Additionally, we highlight the emerging evidence that dysregulation in these processes contributes to a wide range of pathophysiology, including neuropsychiatric disorders, Alzheimer's, and motor neuron diseases such as spinal muscular atrophy and Amyotrophic Lateral Sclerosis. © 2017 Wiley Periodicals, Inc. Develop. Neurobiol, 2017.

The physical approximation of APP and BACE-1: A key event in alzheimer's disease pathogenesis


Alzheimer's disease (AD) is characterized by the accumulation of insoluble deposits of Amyloid β (Aβ) in brains. Aβ is derived by sequential cleavage of the amyloid precursor protein (APP) by β-site secretase enzyme (BACE-1) and γ-secretase. Proteolytic processing of APP by BACE-1 is the rate-limiting step in Aβ production, and this pathway is a prime target for AD drug development. Both APP and BACE-1 are membrane-spanning proteins, transported via secretory and endocytic pathways; and the physical interaction of APP and BACE-1 during trafficking is a key cell biological event initiating the amyloidogenic pathway. Here, we highlight recent research on intracellular trafficking/sorting of APP and BACE-1, and discuss how dysregulation of these pathways might lead to enhanced convergence of APP and BACE-1, and subsequent β-cleavage of APP. © 2017 Wiley Periodicals, Inc. Develop Neurobiol, 2017

Increased glia density in the caudate nucleus in williams syndrome: Implications for frontostriatal dysfunction in autism


Williams syndrome (WS) is a rare neurodevelopmental disorder with a well-described, known genetic etiology. In contrast to Autism Spectrum Disorders (ASD), WS has a unique phenotype characterized by global reductions in IQ and visuospatial ability, with relatively preserved language function, enhanced reactivity to social stimuli and music, and an unusual eagerness to interact socially with strangers. A duplication of the deleted region in WS has been implicated in a subset of ASD cases, defining a spectrum of genetic and behavioral variation at this locus defined by these opposite extremes in social behavior. The hypersociability characteristic of WS may be linked to abnormalities of frontostriatal circuitry that manifest as deficits in inhibitory control of behavior. Here, we examined the density of neurons and glia in associative and limbic territories of the striatum including the caudate, putamen, and nucleus accumbens regions in Nissl stained sections in five pairs of age, sex, and hemisphere-matched WS and typically-developing control (TD) subjects. In contrast to what is reported in ASD, no significant increase in overall neuron density was observed in this study. However, we found a significant increase in the density of glia in the dorsal caudate nucleus, and in the ratio of glia to neurons in the dorsal and medial caudate nucleus in WS, accompanied by a significant increase in density of oligodendrocytes in the medial caudate nucleus. These cellular abnormalities may underlie reduced frontostriatal activity observed in WS, with implications for understanding altered connectivity and function in ASD. © 2017 Wiley Periodicals, Inc. Develop Neurobiol, 2017

Two visual systems in one eyestalk: The unusual optic lobe metamorphosis in the stomatopod Alima pacifica


The compound eyes of adult stomatopod crustaceans have two to six ommatidial rows at the equator, called the midband, that are often specialized for color and polarization vision. Beneath the retina, this midband specialization is represented as enlarged optic lobe lamina cartridges and a hernia-like expansion in the medulla. We studied how the optic lobe transforms from the larvae, which possess typical crustacean larval compound eyes without a specialized midband, through metamorphosis into the adults with the midband in a two midband-row species Alima pacifica. Using histological staining, immunolabeling, and 3D reconstruction, we show that the last-stage stomatopod larvae possess double-retina eyes, in which the developing adult visual system forms adjacent to, but separate from, the larval visual system. Beneath the two retinas, the optic lobe also contains two sets of optic neuropils, comprising of a larval lamina, medulla, and lobula, as well as an adult lamina, medulla, and lobula. The larval eye and all larval optic neuropils degenerate and disappear approximately a week after metamorphosis. In stomatopods, the unique adult visual system and all optic neuropils develop alongside the larval system in the eyestalk of last-stage larvae, where two visual systems and two independent visual processing pathways coexist. © 2017 Wiley Periodicals, Inc. Develop Neurobiol, 2017

Advances in noninvasive myelin imaging


Myelin is important for the normal development and healthy function of the nervous system. Recent developments in MRI acquisition and tissue modeling aim to provide a better characterization and more specific markers for myelin. This allows for specific monitoring of myelination longitudinally and noninvasively in the healthy brain as well as assessment of treatment and intervention efficacy. Here, we offer a nontechnical review of MRI techniques developed to specifically monitor myelin such as magnetization transfer (MT) and myelin water imaging (MWI). We further summarize recent studies that employ these methods to measure myelin in relation to development and aging, learning and experience, and neuropathology and psychiatric disorders. © 2017 Wiley Periodicals, Inc. Develop Neurobiol, 2017

The role of mitochondria in axon development and regeneration


Mitochondria are dynamic organelles that undergo transport, fission, and fusion. The three main functions of mitochondria are to generate ATP, buffer cytosolic calcium, and generate reactive oxygen species. A large body of evidence indicates that mitochondria are either primary targets for neurological disease states and nervous system injury, or are major contributors to the ensuing pathologies. However, the roles of mitochondria in the development and regeneration of axons have just begun to be elucidated. Advances in the understanding of the functional roles of mitochondria in neurons had been largely impeded by insufficient knowledge regarding the molecular mechanisms that regulate mitochondrial transport, stalling, fission/fusion, and a paucity of approaches to image and analyze mitochondria in living axons at the level of the single mitochondrion. However, technical advances in the imaging and analysis of mitochondria in living neurons and significant insights into the mechanisms that regulate mitochondrial dynamics have allowed the field to advance. Mitochondria have now been attributed important roles in the mechanism of axon extension, regeneration, and axon branching. The availability of new experimental tools is expected to rapidly increase our understanding of the functions of axonal mitochondria during both development and later regenerative attempts. © 2017 Wiley Periodicals, Inc. Develop Neurobiol, 2017

Development and maintenance of the brain's immune toolkit: Microglia and non-parenchymal brain macrophages


Microglia and non-parenchymal macrophages located in the perivascular space, the meninges and the choroid plexus are independent immune populations that play vital roles in brain development, homeostasis, and tissue healing. Resident macrophages account for a significant proportion of cells in the brain and their density remains stable throughout the lifespan thanks to constant turnover. Microglia develop from yolk sac progenitors, later evolving through intermediate progenitors in a fine-tuned process in which intrinsic factors and external stimuli combine to progressively sculpt their cell type-specific transcriptional profiles. Recent evidence demonstrates that non-parenchymal macrophages are also generated during early embryonic development. In recent years, the development of powerful fate mapping approaches combined with novel genomic and transcriptomic methodologies have greatly expanded our understanding of how brain macrophages develop and acquire specialized functions, and how cell population dynamics are regulated. Here, we review the transcription factors, epigenetic remodeling, and signaling pathways orchestrating the embryonic development of microglia and non-parenchymal macrophages. Next, we describe the dynamics of the macrophage populations of the brain and discuss the role of progenitor cells, to gain a better understanding of their functions in the healthy and diseased brain. © 2017 Wiley Periodicals, Inc. Develop Neurobiol, 2017

Bad wrap: Myelin and myelin plasticity in health and disease


Human central nervous system myelin development extends well into the fourth decade of life, and this protracted period underscores the potential for experience to modulate myelination. The concept of myelin plasticity implies adaptability in myelin structure and function in response to experiences during development and beyond. Mounting evidence supports this concept of neuronal activity-regulated changes in myelin-forming cells, including oligodendrocyte precursor cell proliferation, oligodendrogenesis and modulation of myelin microstructure. In healthy individuals, myelin plasticity in associative white matter structures of the brain is implicated in learning and motor function in both rodents and humans. Activity-dependent changes in myelin-forming cells may influence the function of neural networks that depend on the convergence of numerous neural signals on both a temporal and spatial scale. However, dysregulation of myelin plasticity can disadvantageously alter myelin microstructure and result in aberrant circuit function or contribute to pathological cell proliferation. Emerging roles for myelin plasticity in normal neurological function and in disease are discussed. © 2017 Wiley Periodicals, Inc. Develop Neurobiol, 2017

Neurodevelopmental disease mechanisms, primary cilia, and endosomes converge on the BLOC-1 and BORC complexes


The biogenesis of lysosome-related organelles complex-1 (BLOC-1) and the bloc-one-related complex (BORC) are the cytosolic protein complexes required for specialized membrane protein traffic along the endocytic route and the spatial distribution of endosome-derived compartments, respectively. BLOC-1 and BORC complex subunits and components of their interactomes have been associated with the risk and/or pathomechanisms of neurodevelopmental disorders. Thus, cellular processes requiring BLOC-1 and BORC interactomes have the potential to offer novel insight into mechanisms underlying behavioral defects. We focus on interactions between BLOC-1 or BORC subunits with the actin and microtubule cytoskeleton, membrane tethers, and SNAREs. These interactions highlight requirements for BLOC-1 and BORC in membrane movement by motors, control of actin polymerization, and targeting of membrane proteins to specialized cellular domains such as the nerve terminal and the primary cilium. We propose that the endosome–primary cilia pathway is an underappreciated hub in the genesis and mechanisms of neurodevelopmental disorders. © 2017 Wiley Periodicals, Inc. Develop Neurobiol, 2017

Myelin plasticity, neural activity, and traumatic neural injury


The possibility that adult organisms exhibit myelin plasticity has recently become a topic of great interest. Many researchers are exploring the role of myelin growth and adaptation in daily functions such as memory and motor learning. Here we consider evidence for three different potential categories of myelin plasticity: the myelination of previously bare axons, remodeling of existing sheaths, and the removal of a sheath with replacement by a new internode. We also review evidence that points to the importance of neural activity as a mechanism by which oligodendrocyte precursor cells (OPCs) are cued to differentiate into myelinating oligodendrocytes, which may potentially be an important component of myelin plasticity. Finally, we discuss demyelination in the context of traumatic neural injury and present an argument for altering neural activity as a potential therapeutic target for remyelination following injury. © 2017 Wiley Periodicals, Inc. Develop Neurobiol, 2017.

Neuroglial interactions underpinning myelin plasticity


The CNS is extremely responsive to an ever-changing environment. Studies of neural circuit plasticity focus almost exclusively on functional and structural changes of neuronal synapses. In recent years, however, myelin plasticity has emerged as a potential modulator of neuronal networks. Myelination of previously unmyelinated axons and changes in the structure of myelin on already-myelinated axons (similar to changes in internode number and length or myelin thickness or geometry of the nodal area) can in theory have significant effects on the function of neuronal networks. In this article, the authors review the current evidence for myelin changes occurring in the adult CNS, highlight some potential underlying mechanisms of how neuronal activity may regulate myelin changes, and explore the similarities between neuronal and myelin plasticity. © 2017 Wiley Periodicals, Inc. Develop Neurobiol, 2017

Myelin development, plasticity, and pathology in the auditory system


Myelin allows for the rapid and precise timing of action potential propagation along neuronal circuits and is essential for healthy auditory system function. In this article, we discuss what is currently known about myelin in the auditory system with a focus on the timing of myelination during auditory system development, the role of myelin in supporting peripheral and central auditory circuit function, and how various myelin pathologies compromise auditory information processing. Additionally, in keeping with the increasing recognition that myelin is dynamic and is influenced by experience throughout life, we review the growing evidence that auditory sensory deprivation alters myelin along specific segments of the brain's auditory circuit. © 2017 Wiley Periodicals, Inc. Develop Neurobiol, 2017

GABA type a receptor trafficking and the architecture of synaptic inhibition


Ubiquitous expression of GABA type A receptors (GABAAR) in the central nervous system establishes their central role in coordinating most aspects of neural function and development. Dysregulation of GABAergic neurotransmission manifests in a number of human health disorders and conditions that in certain cases can be alleviated by drugs targeting these receptors. Precise changes in the quantity or activity of GABAARs localized at the cell surface and at GABAergic postsynaptic sites directly impact the strength of inhibition. The molecular mechanisms constituting receptor trafficking to and from these compartments therefore dictate the efficacy of GABAAR function. Here we review the current understanding of how GABAARs traffic through biogenesis, plasma membrane transport, and degradation. Emphasis is placed on discussing novel GABAergic synaptic proteins, receptor and scaffolding post-translational modifications, activity-dependent changes in GABAAR confinement, and neuropeptide and neurosteroid mediated changes. We further highlight modern techniques currently advancing the knowledge of GABAAR trafficking and clinically relevant neurodevelopmental diseases connected to GABAergic dysfunction. © 2017 Wiley Periodicals, Inc. Develop Neurobiol, 2017.

The where, what, and when of membrane protein degradation in neurons


Membrane protein turnover and degradation are required for the function and health of all cells. Neurons may live for the entire lifetime of an organism and are highly polarized cells with spatially segregated axonal and dendritic compartments. Both longevity and morphological complexity represent challenges for regulated membrane protein degradation. To investigate how neurons cope with these challenges, an increasing number of recent studies investigated local, cargo-specific protein sorting, and degradation at axon terminals and in dendritic processes. In this review, we explore the current answers to the ensuing questions of where, what, and when membrane proteins are degraded in neurons. © 2017 Wiley Periodicals, Inc. Develop Neurobiol, 2017

Widespread transcriptional alternations in oligodendrocytes in the adult mouse brain following chronic stress


Emerging evidence shows that oligodendrogenesis and myelination are highly responsive to behavioral experience, including physical activity and social experience. This form of myelin plasticity is being increasingly appreciated and examined in the prefrontal cortex (PFC), a critical brain region involved in complex emotional and cognitive behavior. However, it remains unclear whether myelination in other brain regions is affected by behavioral experience. Here we report that exposure to 4 weeks of chronic variable stress induced anxiety- and depressive-like behavior in male adult mice. In concert with these behavioral responses, transcriptional analysis of PFC, and nucleus accumbens (NAc)—a brain region critical for reward response—revealed downregulation of transcripts encoding for myelin genes and oligodendrocyte-specific genes. In contrast, upregulation of myelin-related transcripts was observed in the corpus callosum (CC), whereas the amygdala (AMG) did not show significant changes. Shorter exposure to the same stressors induced behavioral changes to a less extent and was followed by a stress habituation period. However, reduced myelin and oligodendrocyte-specific gene transcripts were detected as early as one week following stress exposure in the PFC and NAc. These data indicate that oligodendrocyte and their progenitors in multiple brain regions are responsive to stressful experiences and show distinctive and region-specific patterns of gene expression. © 2017 Wiley Periodicals, Inc. Develop Neurobiol, 2017

Intrinsic and adaptive myelination—A sequential mechanism for smart wiring in the brain


The concept of adaptive myelination—myelin plasticity regulated by activity—is an important advance for the field. What signals set up the adaptable pattern in the first place? Here we review work that demonstrates an intrinsic pathway within oligodendrocytes requiring only an axon-shaped substrate to generate multilayered and compacted myelin sheaths of a physiological length. Based on this, we discuss a model we proposed in 2015 which argues that myelination has two phases—intrinsic and then adaptive—which together generate “smart wiring,” in which active axons become more myelinated. This model explains why prior studies have failed to identify a signal necessary for central nervous system myelination and argues that myelination, like synapses, might contribute to learning by the activity-dependent modification of an initially hard-wired pattern. © 2017 Wiley Periodicals, Inc. Develop Neurobiol, 2017

Cover Image


Cover: The cover, by Sanam Zarei et al., is based on the Research Article Sonic hedgehog antagonists reduce size and alter patterning of the frog inner ear, DOI: 10.1002/dneu.22544.

Issue Information


Chondroitin sulfate proteoglycans negatively regulate the positioning of mitochondria and endoplasmic reticulum to distal axons


Chondroitin sulfate proteoglycans (CSPGs) are components of the extracellular matrix that inhibit the extension and regeneration of axons. However, the underlying mechanism of action remains poorly understood. Mitochondria and endoplasmic reticulum (ER) are functionally inter-linked organelles important to axon development and maintenance. We report that CSPGs impair the targeting of mitochondria and ER to the growth cones of chicken embryonic sensory axons. The effect of CSPGs on the targeting of mitochondria is blocked by inhibition of the LAR receptor for CSPGs. The regulation of the targeting of mitochondria and ER to the growth cone by CSPGs is due to attenuation of PI3K signaling, which is known to be downstream of LAR receptor activation. Dynactin is a required component of the dynein motor complex that drives the normally occurring retrograde evacuation of mitochondria from growth cones. CSPGs elevate the levels of p150Glu dynactin found in distal axons, and inhibition of the interaction of dynactin with dynein increased axon lengths on CSPGs. CSPGs decreased the membrane potential of mitochondria, and pharmacological inhibition of mitochondria respiration at the growth cone independent of manipulation of mitochondria positioning impaired axon extension. Combined inhibition of dynactin and potentiation of mitochondria respiration further increased axon lengths on CSPGs relative to inhibition of dynactin alone. These data reveal that the regulation of the localization of mitochondria and ER to growth cones is a previously unappreciated aspect of the effects of CSPGs on embryonic axons. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1351–1370, 2017

Age-dependent expression of Nav1.9 channels in medial prefrontal cortex pyramidal neurons in rats


Developmental changes that occur in the prefrontal cortex during adolescence alter behavior. These behavioral alterations likely stem from changes in prefrontal cortex neuronal activity, which may depend on the properties and expression of ion channels. Nav1.9 sodium channels conduct a Na+ current that is TTX resistant with a low threshold and noninactivating over time. The purpose of this study was to assess the presence of Nav1.9 channels in medial prefrontal cortex (mPFC) layer II and V pyramidal neurons in young (20-day old), late adolescent (60-day old), and adult (6- to 7-month old) rats. First, we demonstrated that layer II and V mPFC pyramidal neurons in slices obtained from young rats exhibited a TTX-resistant, low-threshold, noninactivating, and voltage-dependent Na+ current. The mRNA expression of the SCN11a gene (which encodes the Nav1.9 channel) in mPFC tissue was significantly higher in young rats than in late adolescent and adult rats. Nav1.9 protein was immunofluorescently labeled in mPFC cells in slices and analyzed via confocal microscopy. Nav1.9 immunolabeling was present in layer II and V mPFC pyramidal neurons and was more prominent in the neurons of young rats than in the neurons of late adolescent and adult rats. We conclude that Nav1.9 channels are expressed in layer II and V mPFC pyramidal neurons and that Nav1.9 protein expression in the mPFC pyramidal neurons of late adolescent and adult rats is lower than that in the neurons of young rats. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1371–1384, 2017

Sonic hedgehog antagonists reduce size and alter patterning of the frog inner ear


Sonic hedgehog (Shh) signaling plays a major role in vertebrate development, from regulation of proliferation to the patterning of various organs. In amniotes, Shh affects dorsoventral patterning in the inner ear but affects anteroposterior patterning in teleost ears. It remains unknown how altered function of Shh relates to morphogenetic changes that coincide with the evolution of limbs and novel auditory organs in the ear. In this study, we used the tetrapod, Xenopus laevis, to test how increasing concentrations of the Shh signal pathway antagonist, Vismodegib, affects ear development. Vismodegib treatment dose dependently alters the development of the ear, hypaxial muscle, and indirectly the Mauthner cell through its interaction with the inner ear afferents. Together, these phenotypes have an effect on escape response. The altered Mauthner cell likely contributes to the increased time to respond to a stimulus. In addition, the increased hypaxial muscle in the trunk likely contributes to the subtle change in animal C-start flexion angle. In the ear, Vismodegib treatment results in decreasing segregation between the gravistatic sensory epithelia as the concentration of Vismodegib increases. Furthermore, at higher doses, there is a loss of the horizontal canal but no enantiomorphic transformation, as in bony fish lacking Shh. Like in amniotes, Shh signaling in frogs affects dorsoventral patterning in the ear, suggesting that auditory sensory evolution in sarcopterygians/tetrapods evolved with a shift of Shh function in axis specification. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1385–1400, 2017

Regulation of glycosaminoglycan biogenesis is critical for sensitive-period-dependent vocal ontogeny


In the brain, the extracellular matrix (ECM) plays a central role during neural development and thus modulates critical-period regulated behavioral ontogeny. The major components of the ECM are glycosaminoglycans (GAGs) including chondroitin sulfate (CS). However, the specific roles of GAGs in behavioral development are largely unknown. It has been shown that xylosides affect the biological functions of GAGs through modulating GAG biosynthesis. Particularly, xylosides affect GAG biosynthesis through priming of GAG chains (priming activity), competing with endogenous core proteins that carry GAG initiation sites (decoy activity), or both. Using birdsong as our model, we investigated, for the first time, how xyloside-mediated modulation of GAG biogenesis affects song development. Xylosides infused into motor cortex of juvenile birds alter song development by specifically affecting ontogeny of the stereotyped sequence rather than the acoustic structure of syllables. Further analyses reveal that observed changes can be attributed to the priming activity rather than the decoy activity of xylosides. Collectively, these results suggest that regulation of GAG biogenesis through chemical biology approaches may allow promising therapeutic interventions of critical-period-dependent central nervous system plasticity. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1401–1412, 2017

Disruption of behavior and brain metabolism in artificially reared rats


Early adverse life stress has been associated to behavioral disorders that can manifest as inappropriate or aggressive responses to social challenges. In this study, we analyzed the effects of artificial rearing on the open field and burial behavioral tests and on GFAP, c-Fos immunoreactivity, and glucose metabolism measured in anxiety-related brain areas. Artificial rearing of male rats was performed by supplying artificial milk through a cheek cannula and tactile stimulation, mimicking the mother's licking to rat pups from the fourth postnatal day until weaning. Tactile stimulation was applied twice a day, at morning and at night, by means of a camel brush on the rat anogenital area. As compared to mother reared rats, greater aggressiveness, and boldness, stereotyped behavior (burial conduct) was observed in artificially reared rats which occurred in parallel to a reduction of GFAP immunoreactivity in somatosensory cortex, c-Fos immunoreactivity at the amygdala and primary somatosensory cortex, and lower metabolism in amygdala (as measured by 2-deoxi-2-[18fluoro]-d-glucose uptake, assessed by microPET imaging). These results could suggest that tactile and/or chemical stimuli from the mother and littermates carry relevant information for the proper development of the central nervous system, particularly in brain areas involved with emotions and social relationships of the rat. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1413–1429, 2017

α2-glycine receptors modulate adult hippocampal neurogenesis and spatial memory


The α2-glycine receptors (GlyRs) play important roles during early central nervous system development. However, these receptors’ possible involvement in neurodevelopmental events occurring in the adult brain remains to be explored. Adult hippocampal neurogenesis (AHN) is the process by which new granule cell neurons are added to the dentate gyrus (DG) throughout adulthood. In this study, we observed that hippocampal adult neural stem cells (ANSCs) express α2-containing GlyRs. Pharmacological inhibition of GlyRs by strychnine or picrotoxin decreased the proliferation of ANSCs, both in vivo and in vitro. Mice knockout for glra2, the gene coding for the GlyR α2 subunit, were determined to display impaired AHN, and this phenomenon was accompanied by deficits in spatial memory. These results, which reveal neurodevelopmental roles for α2-GlyRs in the adult brain, may be clinically relevant, given that a mutation in GLAR2, as well as AHN impairments, have been reported in autism spectrum disorder. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1430–1441, 2017