Subscribe: DNA Research - current issue
Added By: Feedage Forager Feedage Grade B rated
Language: English
amino acid  dna  expression  gene  genes  genomic  method  reciprocal hybrids  recombination  saccharomyces  sequencing  translation 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: DNA Research - current issue

DNA Research Current Issue

Published: Mon, 07 Aug 2017 00:00:00 GMT

Last Build Date: Mon, 11 Dec 2017 19:47:37 GMT


Isolation of highly thermostable β-xylosidases from a hot spring soil microbial community using a metagenomic approach

Mon, 07 Aug 2017 00:00:00 GMT

The DNA extracted from a high-temperature environment in which micro-organisms are living will be a good source for the isolation of thermostable enzymes. Using a metagenomic approach, we aimed to isolate thermostable β-xylosidases that will be exploited for biofuel production from lignocellulosic biomass. DNA samples obtained from the soil near a spout of a hot spring (70°C, pH7.2) were subjected to sequencing, which generated a total of 84.2 Gbp with 967,925 contigs of >500 bp in length. Similarity search for β-xylosidase in the contigs revealed the presence of 168 candidate sequences, each of which may have arisen from more than one gene. Individual genes were amplified by PCR using sequence-specific primers. The resultant DNA fragments were cloned and introduced into Escherichia coli BL21 Star(DE3). Consequently, 269 proteins were successfully expressed in the E. coli cells and then examined for β-xylosidase activity. A total of 82 proteins exhibited β-xylosidase activity at 50°C, six of which retained the activity even at 90°C. Out of the six, three proteins were originated from a single candidate sequence, AR19M-311. An amino acid sequence comparison suggested the amino acid residues that appeared to be crucial for thermal stability of the enzymes.

Comparative whole-genome analysis reveals artificial selection effects on Ustilago esculenta genome

Wed, 19 Jul 2017 00:00:00 GMT

Ustilago esculenta, infects Zizania latifolia, and induced host stem swollen to be a popular vegetable called Jiaobai in China. It is the long-standing artificial selection that maximizes the occurrence of favourable Jiaobai, and thus maintaining the plant–fungi interaction and modulating the fungus evolving from plant pathogen to entophyte. In this study, whole genome of U. esculenta was sequenced and transcriptomes of the fungi and its host were analysed. The 20.2 Mb U. esculenta draft genome of 6,654 predicted genes including mating, primary metabolism, secreted proteins, shared a high similarity to related Smut fungi. But U. esculenta prefers RNA silencing not repeat-induced point in defence and has more introns per gene, indicating relatively slow evolution rate. The fungus also lacks some genes in amino acid biosynthesis pathway which were filled by up-regulated host genes and developed distinct amino acid response mechanism to balance the infection–resistance interaction. Besides, U. esculenta lost some surface sensors, important virulence factors and host range-related effectors to maintain the economic endophytic life. The elucidation of the U. esculenta genomic information as well as expression profiles can not only contribute to more comprehensive insights into the molecular mechanism underlying artificial selection but also into smut fungi–host interactions.

Co-adaption of tRNA gene copy number and amino acid usage influences translation rates in three life domains

Tue, 11 Jul 2017 00:00:00 GMT

Although more and more entangled participants of translation process were realized, how they cooperate and co-determine the final translation efficiency still lacks details. Here, we reasoned that the basic translation components, tRNAs and amino acids should be consistent to maximize the efficiency and minimize the cost. We firstly revealed that 310 out of 410 investigated genomes of three domains had significant co-adaptions between the tRNA gene copy numbers and amino acid compositions, indicating that maximum efficiency constitutes ubiquitous selection pressure on protein translation. Furthermore, fast-growing and larger bacteria are found to have significantly better co-adaption and confirmed the effect of this pressure. Within organism, highly expressed proteins and those connected to acute responses have higher co-adaption intensity. Thus, the better co-adaption probably speeds up the growing of cells through accelerating the translation of special proteins. Experimentally, manipulating the tRNA gene copy number to optimize co-adaption between enhanced green fluorescent protein (EGFP) and tRNA gene set of Escherichia coli indeed lifted the translation rate (speed). Finally, as a newly confirmed translation rate regulating mechanism, the co-adaption reflecting translation rate not only deepens our understanding on translation process but also provides an easy and practicable method to improve protein translation rates and productivity.

A convenient method to pre-screen candidate guide RNAs for CRISPR/Cas9 gene editing by NHEJ-mediated integration of a ‘self-cleaving’ GFP-expression plasmid

Fri, 30 Jun 2017 00:00:00 GMT

The efficacies of guide RNAs (gRNAs), the short RNA molecules that bind to and determine the sequence specificity of the Streptococcus pyogenes Cas9 nuclease, to mediate DNA cleavage vary dramatically. Thus, the selection of appropriate target sites, and hence spacer sequence, is critical for most applications. Here, we describe a simple, unparalleled method for experimentally pre-testing the efficiencies of various gRNAs targeting a gene. The method explores NHEJ-cloning, genomic integration of a GFP-expressing plasmid without homologous arms and linearized in-cell. The use of ‘self-cleaving’ GFP-plasmids containing universal gRNAs and corresponding targets alleviates cloning burdens when this method is applied. These universal gRNAs mediate efficient plasmid cleavage and are designed to avoid genomic targets in several model species. The method combines the advantages of the straightforward FACS detection provided by applying fluorescent reporter systems and of the PCR-based approaches being capable of testing targets in their genomic context, without necessitating any extra cloning steps. Additionally, we show that NHEJ-cloning can also be used in mammalian cells for targeted integration of donor plasmids up to 10 kb in size, with up to 30% efficiency, without any selection or enrichment.

Differential DNA methylation and gene expression in reciprocal hybrids between Solanum lycopersicum and S. pimpinellifolium

Thu, 29 Jun 2017 00:00:00 GMT

Wide hybridization is a common and efficient breeding strategy for enhancing crop yield and quality. An interesting phenomenon is that the reciprocal hybrids usually show different phenotypes, and its underlying mechanism is not well understood. Here, we reported our comparative analysis of the DNA methylation patterns in Solanum lycopersicum, Solanum pimpinellifolium and their reciprocal hybrids by methylated DNA immunoprecipitation sequencing. The reciprocal hybrids had lower levels of DNA methylation in CpG islands and LTR retroelements when compared with those of their parents. Importantly, remarkable differences in DNA methylation patterns, mainly in introns and CDS regions, were revealed between the reciprocal hybrids. These different methylated regions were mapped to 79 genes, 14 of which were selected for analysis of gene expression levels. While there was an inverse correlation between DNA methylation and gene expression in promoter regions, the relationship was complicated in gene body regions. Further association analysis revealed that there were 15 differentially methylated genes associated with siRNAs, and that the methylation levels of these genes were inversely correlated with respective siRNAs. All these data raised the possibility that the direction of hybridization induced the divergent epigenomes leading to changes in the transcription levels of reciprocal hybrids.

Sequencing and phasing cancer mutations in lung cancers using a long-read portable sequencer

Tue, 27 Jun 2017 00:00:00 GMT

Here, we employed cDNA amplicon sequencing using a long-read portable sequencer, MinION, to characterize various types of mutations in cancer-related genes, namely, EGFR, KRAS, NRAS and NF1. For homozygous SNVs, the precision and recall rates were 87.5% and 91.3%, respectively. For previously reported hotspot mutations, the precision and recall rates reached 100%. The precise junctions of EML4-ALK, CCDC6-RET and five other gene fusions were also detected. Taking advantages of long-read sequencing, we conducted phasing of EGFR mutations and elucidated the mutational allelic backgrounds of anti-tumor drug-sensitive and resistant mutations, which could provide useful information for selecting therapeutic approaches. In the H1975 cells, 72% of the reads harbored both L858R and T790M mutations, and 22% of the reads harbored neither mutation. To ensure that the clinical requirements can be met in potentially low cancer cell populations, we further conducted a serial dilution analysis of the template for EGFR mutations. Several percent of the mutant alleles could be detected depending on the yield and quality of the sequencing data. Finally, we characterized the mutation genotypes in eight clinical samples. This method could be a convenient long-read sequencing-based analytical approach and thus may change the current approaches used for cancer genome sequencing.

Expression properties exhibit correlated patterns with the fate of duplicated genes, their divergence, and transcriptional plasticity in Saccharomycotina

Thu, 15 Jun 2017 00:00:00 GMT

Gene duplication is an important source of novelties and genome complexity. What genes are preserved as duplicated through long evolutionary times can shape the evolution of innovations. Identifying factors that influence gene duplicability is therefore an important aim in evolutionary biology. Here, we show that in the yeast Saccharomyces cerevisiae the levels of gene expression correlate with gene duplicability, its divergence, and transcriptional plasticity. Genes that were highly expressed before duplication are more likely to be preserved as duplicates for longer evolutionary times and wider phylogenetic ranges than genes that were lowly expressed. Duplicates with higher expression levels exhibit greater divergence between their gene copies. Duplicates that exhibit higher expression divergence are those enriched for TATA-containing promoters. These duplicates also show transcriptional plasticity, which seems to be involved in the origin of adaptations to environmental stresses in yeast. While the expression properties of genes strongly affect their duplicability, divergence and transcriptional plasticity are enhanced after gene duplication. We conclude that highly expressed genes are more likely to be preserved as duplicates due to their promoter architectures, their greater tolerance to expression noise, and their ability to reduce the noise-plasticity conflict.

The evolutionary history of Saccharomyces species inferred from completed mitochondrial genomes and revision in the ‘yeast mitochondrial genetic code’

Thu, 15 Jun 2017 00:00:00 GMT

The yeast Saccharomyces are widely used to test ecological and evolutionary hypotheses. A large number of nuclear genomic DNA sequences are available, but mitochondrial genomic data are insufficient. We completed mitochondrial DNA (mtDNA) sequencing from Illumina MiSeq reads for all Saccharomyces species. All are circularly mapped molecules decreasing in size with phylogenetic distance from Saccharomyces cerevisiae but with similar gene content including regulatory and selfish elements like origins of replication, introns, free-standing open reading frames or GC clusters. Their most profound feature is species-specific alteration in gene order. The genetic code slightly differs from well-established yeast mitochondrial code as GUG is used rarely as the translation start and CGA and CGC code for arginine. The multilocus phylogeny, inferred from mtDNA, does not correlate with the trees derived from nuclear genes. mtDNA data demonstrate that Saccharomyces cariocanus should be assigned as a separate species and Saccharomyces bayanus CBS 380T should not be considered as a distinct species due to mtDNA nearly identical to Saccharomyces uvarum mtDNA. Apparently, comparison of mtDNAs should not be neglected in genomic studies as it is an important tool to understand the origin and evolutionary history of some yeast species.

Low-coverage resequencing detects meiotic recombination pattern and features in tomato RILs

Fri, 09 Jun 2017 00:00:00 GMT

Traditional plant breeding relies on meiotic recombination for mixing of parental alleles to create novel allele combinations. Detailed analysis of recombination patterns in model organisms shows that recombination is tightly regulated within the genome, but frequencies vary extensively along chromosomes. Despite being a model organism for fruit developmental studies, high-resolution recombination patterns are lacking in tomato. In this study, we developed a novel methodology to use low-coverage resequencing to identify genome-wide recombination patterns and applied this methodology on 60 tomato Recombinant Inbred Lines (RILs). Our methodology identifies polymorphic markers from the low-coverage resequencing population data and utilizes the same data to locate the recombination breakpoints in individuals by using a variable sliding window. We identified 1,445 recombination sites comprising 112 recombination prone regions enriched for AT-rich DNA motifs. Furthermore, the recombination prone regions in tomato preferably occurred in gene promoters over intergenic regions, an observation consistent with Arabidopsis thaliana, Zea mays and Mimulus guttatus. Overall, our cost effective method and findings enhance the understanding of meiotic recombination in tomato and suggest evolutionarily conserved recombination associated genomic features.