Subscribe: ACM Queue - Networks
Added By: Feedage Forager Feedage Grade B rated
Language: English
based congestion  based  congestion control  congestion  control  data  distributed  load  loss based  networks  software  systems  time 
Rate this Feed
Rate this feedRate this feedRate this feedRate this feedRate this feed
Rate this feed 1 starRate this feed 2 starRate this feed 3 starRate this feed 4 starRate this feed 5 star

Comments (0)

Feed Details and Statistics Feed Statistics
Preview: ACM Queue - Networks

ACM Queue - Networks


Toward a Network of Connected Things

Tue, 13 Feb 2018 15:09:09 GMT

While the scale of data presents new avenues for improvement, the key challenges for the everyday adoption of IoT systems revolve around managing this data. First, we need to consider where the data is being processed and stored and what the privacy and systems implications of these policies are. Second, we need to develop systems that generate actionable insights from this diverse, hard-to-interpret data for non-tech users. Solving these challenges will allow IoT systems to deliver maximum value to end users.

Bitcoin's Underlying Incentives

Tue, 28 Nov 2017 12:06:30 GMT

Incentives are crucial for the Bitcoin protocol's security and effectively drive its daily operation. Miners go to extreme lengths to maximize their revenue and often find creative ways to do so that are sometimes at odds with the protocol. Cryptocurrency protocols should be placed on stronger foundations of incentives. There are many areas left to improve, ranging from the very basics of mining rewards and how they interact with the consensus mechanism, through the rewards in mining pools, and all the way to the transaction fee market itself.

Private Online Communication; Highlights in Systems Verification

Wed, 04 Oct 2017 16:07:21 GMT

First, Albert Kwon provides an overview of recent systems for secure and private communication. While messaging protocols such as Signal provide privacy guarantees, Albert's selected research papers illustrate what is possible at the cutting edge: more transparent endpoint authentication, better protection of communication metadata, and anonymous broadcasting. These papers marry state-of-the-art cryptography with practical, privacy-preserving protocols, providing a glimpse of what we might expect from tomorrow's secure messaging systems. Second, James Wilcox takes us on a tour of recent advances in verified systems design. It's now possible to build end-to-end verified compilers, operating systems, and distributed systems that are provably correct with respect to well-defined specifications, providing high assurance of well-defined, well-behaved code. Because these system components interact with low-level hardware like the instruction set architecture and external networks, each paper introduces new techniques to balance the tension between formal correctness and practical applicability. As programming language techniques advance and more of the modern computing stack continues to crystallize, expect these advances to make their way into production systems.

Network Applications Are Interactive

Wed, 27 Sep 2017 15:27:01 GMT

The miniaturization of devices and the prolific interconnectedness of these devices over high-speed wireless networks is completely changing how commerce is conducted. These changes (a.k.a. digital) will profoundly change how enterprises operate. Software is at the heart of this digital world, but the software toolsets and languages were conceived for the host-based era. The issues that already plague software practice (such as high defects, poor software productivity, information vulnerability, poor software project success rates, etc.) will be more profound with such an approach. It is time for software to be made simpler, secure, and reliable.

Cache Me If You Can

Wed, 30 Aug 2017 16:07:29 GMT

The world is more connected than it ever has been before, and with our pocket supercomputers and IoT (Internet of Things) future, the next generation of the web might just be delivered in a peer-to-peer model. It's a giant problem space, but the necessary tools and technology are here today. We just need to define the problem a little better.

Cold, Hard Cache

Tue, 22 Aug 2017 14:14:44 GMT

Dear KV, Our latest project at work requires a large number of slightly different software stacks to deploy within our cloud infrastructure. With modern hardware, I can test this deployment on a laptop. The problem I keep running up against is that our deployment system seems to secretly cache some of my files and settings and not clear them, even when I repeatedly issue the command to do so. I've resorted to repeatedly using the find command so that I can blow away the offending files. What I've found is that the system caches data in many places so I've started a list. All of which brings me to my question: Who writes this stuff?!

Time, but Faster

Wed, 04 Jan 2017 14:24:29 GMT

The first premise was summed up perfectly by the late Douglas Adams in The Hitchhiker's Guide to the Galaxy: "Time is an illusion. Lunchtime doubly so." The concept of time, when colliding with decoupled networks of computers that run at billions of operations per second, is... well, the truth of the matter is that you simply never really know what time it is. That is why Leslie Lamport's seminal paper on Lamport timestamps was so important to the industry, but this article is actually about wall-clock time, or a reasonably useful estimation of it.

Are You Load Balancing Wrong?

Tue, 20 Dec 2016 13:18:41 GMT

A reader contacted me recently to ask if it is better to use a load balancer to add capacity or to make a service more resilient to failure. The answer is: both are appropriate uses of a load balancer. The problem, however, is that most people who use load balancers are doing it wrong.

Research for Practice: Distributed Transactions and Networks as Physical Sensors

Wed, 07 Dec 2016 12:59:35 GMT

First, Irene Zhang delivers a whirlwind tour of recent developments in distributed concurrency control. If you thought distributed transactions were prohibitively expensive, Irene's selections may prompt you to reconsider: the use of atomic clocks, clever replication protocols, and new means of commit ordering all improve performance at scale. Second, Fadel Adib provides a fascinating look at using computer networks as physical sensors. It turns out that the radio waves passing through our environment and bodies are subtly modulated as they do so. As Fadel's selection shows, new techniques for sensing and interpreting these modulations allow us to perform tasks previously reserved for science fiction: seeing through walls, performing gesture recognition, and monitoring breathing.

BBR: Congestion-Based Congestion Control

Thu, 01 Dec 2016 16:39:26 GMT

When bottleneck buffers are large, loss-based congestion control keeps them full, causing bufferbloat. When bottleneck buffers are small, loss-based congestion control misinterprets loss as a signal of congestion, leading to low throughput. Fixing these problems requires an alternative to loss-based congestion control. Finding this alternative requires an understanding of where and how network congestion originates.